Maximum Likelihosd estratirs
If we have pap distubutun $f_{t}(x)$
if re ohsue $X=x_{0}$ we guess valuto θ
which maximize $g(\theta)=f_{\theta}\left(x_{0}\right)$
Finte example
Fine gegale tole a test, estronale $\#$ gass (θ)
Prik at randen 3 papge: aftlem 2 passed, 1 fariled

$$
\begin{aligned}
\theta= & =0, k, 2,3,4,5 \\
& P(\text { ohwation } \mid \theta) \\
& P(\mid \theta=0)=0 \\
& P(\mid \theta=1)=0 \\
& P(\mid \theta=2)=\frac{\binom{2}{2}\binom{3}{1}}{\binom{5}{3}}=\frac{1.3}{10}=\frac{3}{10} \\
& P(\mid \theta=3)=\frac{\binom{3}{2}\binom{2}{1}}{\binom{5}{3}}=\frac{3.2}{10}=\frac{6}{10} \\
& P(\mid \theta=4)=\frac{\binom{4}{2}\binom{1}{1}}{\binom{5}{3}}=\frac{6.1}{10}=\frac{6}{10}
\end{aligned}
$$

$$
P(\mid A=5)=0
$$

not unique but mast likely me $\begin{aligned} \theta & =3 \\ \theta & =4\end{aligned}$

Romarls about MLE

- dan't reed to be unique
- attenunique los camoman distanutions, carticare
- with certanassungtunns, they are cansistant.
- min'l voriame

Dan't have fo be unbiacd
have insariance pooporty;
if $\hat{\theta}$ a MLE is θ then
$g(\hat{\theta})$ is a MLE ls $g(\theta)$ it g cont
Sone reasamatle meth.d Io consistouts low renie. estruaters.

Example Narmal poplaton $\sigma^{2}=3$ untonown

$$
f_{\mu}(x)=\frac{1}{\sqrt{3 \cdot 2 \pi}} e^{-\frac{1}{6}(x-\mu)^{2}}
$$

If re ahove $n=12, \bar{x}=15$ what is a MCF fo μ.
whith vabe if μ maxmyes

$$
f_{\mu}(\vec{x})=\frac{1}{\sqrt{6 \pi}} e^{-\frac{1}{6} \sum_{i=1}^{12}\left(x_{i}-\mu\right)^{2}}
$$

Usoal traki

$$
\begin{aligned}
& \text { I trak: } \\
& \sum\left(x_{i}-\mu\right)^{2}=\sum\left(\left(x_{i}-\bar{x}\right)+(\bar{x}-\mu)\right)^{2}
\end{aligned}
$$

$$
=\sum\left(x_{i}-\bar{x}\right)^{2}+\sum(\bar{x}-\mu)^{2}
$$

$$
+2 \sum\left(x_{i}-\bar{x}\right)(\bar{x}-\mu)
$$

$$
=\sum\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}
$$

$$
+2(\bar{x}-\mu) \sum_{0} \pi_{0}
$$

$$
\sum\left(x_{i}-\bar{x}\right)=\Sigma x_{i}-\Sigma \bar{x}=n \bar{x}-n \bar{x}=0
$$

$$
\begin{aligned}
f_{\mu}(\vec{x}) & =\frac{1}{\sqrt{6 \pi}} e^{-\frac{1}{6} \sum_{i=1}^{12}\left(x_{i}-\mu\right)^{2}} \\
& =\frac{1}{\sqrt{6 \pi}} e^{-\frac{1}{6} \sum_{i=1}^{12}\left(x_{i}-\bar{x}\right)^{2} \cdot} e^{-\frac{12}{6}(\bar{x}-\mu)^{2}}
\end{aligned}
$$

choose μ to maxing this

$$
\begin{aligned}
& \text { maxing this } \\
& \Rightarrow \text { maxing } e^{-\frac{12}{6}(\vec{x}-\mu)^{2}}
\end{aligned}
$$

max at $\bar{x}=\mu$.
MLE catratar fr μ is \bar{x}

$$
\bar{x}
$$

Corral case both μ is, σ^{2} unknown

$$
\begin{aligned}
& f_{\mu, \sigma^{2}}(\vec{x})=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2}} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} e^{-\frac{n}{2 \sigma^{2}}(\bar{x}-\mu)^{2}}
\end{aligned}
$$

want to salve fo μ, σ^{2} maxing this
we'll find max alunsys is at $\mu=\bar{x}$ what ahat σ^{2} ?

$$
\left.\begin{array}{l}
\frac{\partial}{\partial \sigma^{2}} f_{\mu, \sigma^{2}} \text { manmy } t_{\mu, \sigma^{2}} \Leftrightarrow \text { marvy } \ln f_{\mu, \sigma^{2}} \\
f_{\mu, \sigma^{2}}(\vec{x})=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2}} \\
v=\sigma^{2} \\
f_{\mu, v}(\vec{x})=\left(\frac{1}{2 \pi v}\right)^{n / 2} e^{-\frac{1}{2 v} \sum\left(x_{i}-\mu\right)^{2}} \\
\left.\ln f_{\mu, v}(\vec{x})=-\frac{n}{2} \ln 2 \pi+\ln v\right)-\frac{1}{2 v} \Sigma\left(x_{i}-\mu\right)^{2} \\
\frac{\partial}{\partial v}(
\end{array}\right)=-\frac{n}{2} \frac{1}{v}+\frac{1}{2 v^{2}} \sum\left(x_{i}-\mu\right)^{2}=0 .
$$

m il by $2 v^{2}$

$$
\begin{gathered}
-n v+\sum\left(x_{i}-\mu\right)^{2}=0 \\
v=\frac{\sum\left(x_{i}-\mu\right)^{2}}{n}
\end{gathered}
$$

$$
\mu=\bar{x}
$$

MLE estratrs are $\mu=\bar{x}$

$$
\begin{aligned}
& \hat{\mu}=\bar{X} \\
& \hat{\sigma}^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n}
\end{aligned}
$$

$$
\Rightarrow \hat{\sigma}=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n}} \quad \text { i刀an MoE } \overline{\bar{c}} \quad \text { estmak }
$$

