Previo os straty
Bernoolli process, unknown prawtr $\theta=$ porb it sureess

Do 7 trals, 6 srecess, 1 fail | ramom wherest. |
| :---: |
| wis |

 Twhat can ve do? tlem
promalabidy
$P(\theta)>\frac{1}{2}$? this is a gond eqpater -
Can't ask this. min'l vanave unbised.

* is not arain. confdue ivtroal?
ver-issmans.
ey. RuD estratrs $\hat{\theta}_{s m}, \hat{\theta}_{b y}$ st.

$$
P\left(\hat{凶}_{s m}<\theta<\hat{\theta}_{b y}\right) \geqslant .90
$$

reyh approxi $\sum X_{i}=n \bar{X}$ is broomal
fis mor sent reats
w/ meen nt and os a $\theta(1-\theta)$
so $\frac{n \bar{x}-n^{\theta}}{\sqrt{n \theta(1-\theta)}} \approx z$

$$
\begin{aligned}
& \sqrt{n} \frac{\bar{x}-\theta}{\sqrt{\theta(1-\theta)}} \\
& \text { sa, sy } \quad \sqrt{7} \frac{\bar{x}-\theta}{\sqrt{\theta(1-\theta)}} \geqslant 2 \\
& \sqrt{7}(\bar{x}-\theta) \geqslant \sqrt{\theta(1-\theta)} \\
& \quad \sqrt{7} \bar{x} \geqslant \sqrt{\theta(1-\theta)}+\sqrt{7 \theta} \\
& \quad \bar{x} \geqslant \sqrt{\frac{\theta(1-\theta)}{7}}+\theta
\end{aligned}
$$

Baysosn Approach
Natre in proves cas, we knew notly about pmeces hoverehid. na mito prow.

Imare: have a hay af intar corss.
equally Whely foget ane d any probs orf
vesetre out.
this reps a papelation (dflips) with an cricnown pravetr θ.
bot θ is not as unknorin as thle.
prenosly, couldn't suy $p(\theta>1 / 2)=$? hutuaw re can!
knang $f(x \mid \theta)=\theta$ and $g(\theta)= \begin{cases}1 & \theta \in[0,1] \\ 0 & \text { ele } \\ f(x \mid(1)=\theta)\end{cases}$ $f(x \mid-1 \pi)=\theta)$
we can consider a "jourt diotibuton"

$$
f(x, \theta)=f(x \mid \Theta=\theta)
$$

whatifue get a arees wl are tral? get a wew (pastreanit dert fo θ

$$
g(\theta \mid x=1)
$$

$$
\begin{aligned}
& \text { venee canditoral parametr dot }_{f(x \mid A) g(\theta)}^{f(x, \theta)}=f(x \mid x)=g(\theta \mid X=x)=\frac{f(x)}{g(\theta) \operatorname{mag}_{\partial \Delta t}}
\end{aligned}
$$

$$
f(x)=\int f(x, \theta) d \theta
$$

$$
=\int f(x \mid \theta) g(\theta) d \theta
$$

For example, in our case'

$$
\begin{aligned}
& g\left(\theta(X=1)=\frac{f(x \mid \theta) g(t)}{\int f(x \mid \theta) g(\theta) d \theta}\right. \\
& =\left\{\begin{array}{cc}
\frac{\theta \cdot 1}{\int_{0}^{1} \theta d \theta} & \theta \in[0,1] \\
0 & \text { example, in aus case }
\end{array}\right.
\end{aligned}
$$

$$
=\left\{\begin{array}{cc}
2 \theta & \theta \in[0,1] \\
0 & \text { else }
\end{array}\right.
$$

Straightfomard in princople,
in practive, eithr need to do nomially ar leverge fons a/ nice ansurs.
note: in gerval, $X \rightsquigarrow X_{1} \ldots X_{n}$!
Nice ansm?
Startwl same diot. $f(x \mid \theta)$ and an a proi dest $g(\theta)$ Irt.
now, the a prori dist. has some pronulertim assume $g(\theta)=g(\theta, \varphi)$ wl parm. φ
φ specitred note, this is a "know" gios.
nice means guen arsamjle,
$X_{1, \ldots} X_{n}=x_{1}, \ldots, x_{n}$, the a postrarid doot $g\left(\theta \mid x_{\left.1, \ldots, x_{n}\right)}\right.$ is hasthem

$$
g\left(0, q^{\prime}\right)
$$

same ε^{\prime}.

Ex:
if $f(x, \mu)$ normal $u l$ knoun σ^{2}, ontroman canconsids an a provi got for
$g(\mu)$ \& μ via arandomuar $M, N\left(\mu_{2}, \sigma_{0}^{2}\right)$
Can Heun consids $g(\mu \mid \bar{X}=\bar{x})$ get anothr normal ramable
of type $N\left(\frac{n \bar{x} \sigma_{0}^{2}+\mu_{0} \sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}}, \frac{\sigma^{2} \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}}\right)$

Coinflip exampl?
it you keep flonjy, the a jostrivi $n>1$
dist. Ir θ is a Beta dirt!
recall this is

$$
\begin{aligned}
& \text { call this is } \\
& g_{" 1}(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \\
& g^{(\theta \mid \alpha, \beta)} \\
& \rho_{\pi}
\end{aligned}
$$

Ir $\alpha=1, \beta=1$ this is constant

$$
g(t)=1
$$

$$
\text { Ir } \alpha=2, \beta=1 \text { get } g(t)=2 x
$$

a pastruxi fo $\bar{x}=1, n=1$
and ingerval, a posturer fo $\bar{X}=\bar{x}$
so $n \bar{x}$ success
get

$$
\begin{aligned}
& \alpha=k+1 \\
& \beta=n-k+1
\end{aligned}
$$

$$
\begin{aligned}
& \eta \\
& \varphi^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{7}(\bar{x}-\theta) \geqslant \sqrt{\theta(1-\theta)} \\
x-y=\sqrt{y(1-y)} \\
(x-y)^{2}=y(1-y) \\
x^{2}-2 x y+y^{2}=y(1-y) \\
=y-y^{2} \\
x^{2}-2 x y+2 y^{2}-y=0 \\
x^{2}-2 x y+2 y^{2}-y z=0 \\
y=0 \quad z=1 \quad x=1
\end{gathered}
$$

precul.

