Gerveal clarksatons
Simple: populatron has specifi. Distibuton -
ej. Bernotli poplation $\theta=3 / 4$

- Narmal $\mu=100 \quad \sigma^{2}=40$

Campasite: Jist. nat completely specited
e.y. Bernalli pop $-1 \quad \theta \geqslant 3 / 4$ narmal, $\mu=100, \sigma^{2}=$ unknest

$$
\ldots \mu \in\left[80,(20), \sigma^{2}=40\right.
$$

We can 7 genvally comple exact prebabitites given a campesite hypattsis.

$$
\begin{array}{ll}
H_{0}: 10 \leq \mu \leq 15 \quad \sigma^{2}=25 & \text { normal } \\
n=5 \\
H_{1}: \mu=40 \quad \sigma^{2}=25 &
\end{array}
$$

$P\left(\bar{x}>12 \mid H_{0}\right)=$ nat calculatzible
$P\left(\bar{x}>12 \mid H_{1}\right)=$ calculatzble.
$P(\bar{x}>12 \mid \mu) \quad$ as a funtion of $\mu \quad\left(\sigma^{2}=25\right.$ $\left.\begin{array}{c}n=5 \\ f>e d\end{array}\right)$

Can consider min! max values this fen taker an $[10,15]$
could find statant:

$$
? \leq P\left(X>12\left(H_{0}\right) \leq ?\right.
$$

Example $H_{0} \div \mathrm{fer}$ coin

$$
\begin{aligned}
& H_{0} \div \text { far coin } \\
& H_{1}=P(\text { hearts })>\frac{1}{2} \quad \theta \in\left(\frac{1}{2}, 1\right]
\end{aligned}
$$

expert: Hip 10 times, if all heads conclude H_{1} if nat all hears, conclude H_{0}

$$
\begin{aligned}
& P(\text { type } 1)=P\left(\text { heads }{ }^{10} \mid H_{0}\right)=\left(\frac{1}{2}\right)^{10}=\frac{1}{1024} \\
& P(\text { type 2 })=P\left(\text { heads }^{<10} \mid H_{1}\right) \\
&=1-P\left(\text { heads }^{10} \mid H_{1}\right) \in\left[0, \frac{1023}{1024}\right) \\
& P\left(\text { hess }^{10} \mid \theta\right)=\theta^{10} \\
& P(\text { Leas }
\end{aligned}
$$

$\theta \rightarrow \frac{1}{2}$ approaches sypremum $1-\frac{1}{1024}$

$$
=\frac{1023}{1024}
$$

$$
\text { if } \theta=50.0001 \% \quad\left(H_{1}\right)
$$

