textback "A firsl caurse in probability" ly She(dan Ross (any edition)

Part 1: Country (strategies) "Combinatorio" "Combinatoial analysis"
"Additron prinajle" if $A \vdots B$ are disjont selts

$$
\text { then\#A+\#B=\# }(A \cup B)
$$

$\# A=|A|=\operatorname{ardrof} A$
"Moltipliratun pronaple" i.e. the basic prople. f

$$
\begin{aligned}
& \#(A \times B)=(\# A)(\# B) \\
& A \times B=\{(a, b) \mid a \in A, b \in B\}
\end{aligned}
$$ country

if there are n ways to chase a
\vdots if the are m way to choose b (for any wary to chasse a) then there are $n+m$ ways to choose either a or b
and flene ane um ways to chase bath a ! b
example: given deck if 52 cords, want to chase 3 distuct cards in a sequence

$$
\text { i.e. } \begin{aligned}
\operatorname{card} 1 & =52 \\
\operatorname{cort} 2 & =51 \\
\operatorname{card} 3 & =50 \\
\text { \#ways } & =52.51 .50
\end{aligned}
$$

how many ways to any all cords in a seferce?

$$
52 \cdot 51 \cdot 50 \cdot 49 \ldots . .1=52!
$$

Diviun panciple: Giren two sets A, B, if freach thy in sect B, thre are n thys in $\operatorname{set} A$ then \#A=n\#B.
mone formally, if we hare a functon $A \xrightarrow{f} B$ sot. for each $b \in B, \# f^{-1}(b)=n$

$$
\text { then } \frac{\# A}{n}=\# B
$$

$$
\begin{gathered}
\left.\begin{array}{c}
\text { Choice of sequen } \\
\text { of } 3 \text { cands }
\end{array}\right) \longrightarrow\binom{\text { unardived }}{\text { hand af } 3 \text { cards }} \\
\begin{array}{l}
1: A B \\
2: 10 \diamond \\
3: 3 \diamond
\end{array} \longrightarrow\{A B, 3 \diamond, 10 \diamond\}
\end{gathered}
$$

$$
\text { Gthys } \longrightarrow \text { 1thy }
$$

\# ordeed hads $=6$ \# unardued hands

$$
52.51 .50 \quad \text { \#unordud hands }=\frac{52.57 .50}{6}
$$

General patton
Given n distinct thys, how many ways can we chaos exactly k of them?
if the t thugs are ordered in a sequence

$$
n-(k-1)
$$

severe $\sum_{1}^{n} \underbrace{n-1}_{2} \underbrace{n-2}_{3} \underbrace{n-3}_{\cdots} \ldots$

$$
n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

if unardeed

ways ot andogit.

$$
\begin{gathered}
\text { k! this } \\
\Rightarrow \text { af unaided } \\
\text { seq. of } k \text { from } n
\end{gathered}=\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

$$
\begin{aligned}
& =\frac{n!}{k!(n-k)!}=\binom{n}{k}=\binom{n}{n-k} \\
& \binom{n}{k, n-k} \\
& \binom{5}{2}=\binom{5}{3} \\
& \binom{5}{2,3}
\end{aligned}
$$

flip a coin 10 tres, haw many ways can we do this and get exactly 3 heads?
(oot.f 2^{10} total flip sequences)

$$
\text { ansis: }\binom{16}{3}
$$

10 hacks, distubule them into 2 shelves shelf 1 has 3 barks, shelf 2 has 7 ?

$$
\begin{aligned}
& \text { OD } \\
& \text { OBODODO }
\end{aligned}\binom{10}{3,7}=\begin{aligned}
& \text { \# ways } \\
& \text { to choose }
\end{aligned}
$$ top wo bottom shift freed. book.

ard matters \Rightarrow mull. by $3!(t \not p)$ $7!$ (bytom) ansis $\binom{10}{3,7} \cdot 3!7!=\frac{10!}{3!7!} \cdot 3!7!=10!$

2 teams of 10 people each how many ways can we pair off ane pron flem each tear.

