Suppare ve choose 2 points in $[0,2]$ inderendently, each unifomly disswhited.
what's the prob that the pounts are na mome than 1 unit agart?
x forot pant's position
$\frac{3}{4}$ y scond
(Victor)

$$
P(X \leq a)=\left\{\begin{array}{cl}
0 & a<0 \\
7^{a / 2} & a \in[0,2] \\
1 & a>2
\end{array}\right.
$$

$$
\int_{0}^{a} 1 / 2 d x
$$

Suppore ve voll 2 dice $\quad \begin{aligned} & x \in\{1, \ldots, 6\} \\ & y \in \in\end{aligned}$
prot results ore at mont 1 ayart?

$$
\begin{array}{r}
\frac{1}{36}=P(X=a, y=b) \quad a, b+\{1, \ldots, b\} \\
P(m \text { ohn } 1)=\sum_{\substack{(a, b) \\
|a-b| \leq 1}} P(X=a, \mid / s b \\
\hline, b)
\end{array}
$$

Frrst Step Soppare ve hae 2 samdomvors X, Y

$$
\begin{aligned}
P(X \leqslant a ; y \leqslant b) & =P(E F) \\
E & =[X \leqslant a] \quad F=[y \leqslant b]
\end{aligned}
$$

Ret $F(a, b) \equiv P(x \leq a ; y \leq b)$ called the cumulate dist. future for X, Y.

Nate: from this, car get dist, fens In $X \leqslant Y$, undiendudy

$$
\begin{aligned}
F_{x}(a)=P(X \leq a) & =P(X \leq a, \text { no condo on } Y) \\
& =\lim _{b \rightarrow \infty} P(X \leq a ; Y \leq b) \\
& =\lim _{b \rightarrow \infty} F(a, b) \equiv " F(a, \infty)^{\prime \prime}
\end{aligned}
$$

If x, y dis celt, then $F(a, b)=\sum_{x \leqslant a} P(x=x ; y=y)$ | $x \leq a$ |
| :---: |
| $y \leq b$ |

$$
=\sum_{\substack{x \leqslant 9 \\ y \leqslant b}} p(x, y)
$$

ingenal, x, Y dis arete

$$
P((x, y) \in C)=\sum_{(x, y) \in C} P^{(x, y)}
$$

collection. tits in \mathbb{R}^{2}

$$
x \leqslant a ; y \leqslant b
$$

Def If $x \leqslant y$ are roudomsons, we say they ore jointly contrasty distubuted if prob, density

$$
P((x, y) \in C)=\iint_{(x, y) \in C} f(x, y) d x d y \text { same }^{\text {prob, density }} \text { fou }
$$

equiv off.
fo example:

$$
F(a, b)=P(x \leq a ; y \leq b)=\int_{y=-\infty}^{\substack{\text { cum. dist fan } \\ j \text { int }}} \int_{x=-\infty}^{x=a} f(x, y) d x d y
$$

Nope: by FTC, $f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)$
Back to our two points in $[0,2]$

$$
\begin{aligned}
& X \text { pt } 1 \quad X, Y \text { unit. Dist. } \\
& Y \text { pt } 2 \\
& F(a, b)=P(X \leq a ; y \leq b) \text { sue } x \leq y \text { independent } \\
&=P(x \leq a) P(y \leq h) \\
&=\left(\frac{a}{2}\right)\left(\frac{b}{2}\right)=\frac{a b}{4} \\
&=\int_{y=0}^{b} \int_{x=0}^{a} \frac{1}{4} d x d y
\end{aligned}
$$

$\Rightarrow x\} y$ are cant. jonitly distubuted of dusity $\frac{1}{4}$

$$
\int_{\substack{|x-y|<1 \\ x, y \in[0,2]}} \frac{1}{4} d x d y=\frac{3}{4},
$$

Csen a cont rand rar X

$$
y=x+1
$$

are $x d, y$ jointly cout? no

Suppase X, Y random rens, jointly cont. disubuted. consides $z=x+y$. what is $p z$?

$$
\begin{aligned}
F_{z}(a)=P(z \leqslant a) & =P(x+y \leqslant a) \\
& =P(y \leqslant a-x) \\
& =\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{a-x} f_{x, y}(x, y) d y d x \\
P_{z}(a)= & \frac{d}{d a} \int_{-\infty}^{\infty} \int_{y=-\infty}^{a-x} f_{x, y}(x, y) d y d x \\
& =\int_{x=-\infty}^{\infty} f_{x, y}(x, a-x) d x
\end{aligned}
$$

Df $X\{, y$ ae called indegendunt if

$$
f_{x, y}(a, b)=f_{x}(a) f_{y}(b)
$$

in this case $z=x+y$, abave gues $f_{x+y}(a)=\int_{x=-\infty}^{\infty} f_{x}(x) f_{y}(a-x) d x$

$$
=f_{x}^{*} f_{y}(a)
$$

