Given 6 cards labelled I throyh 6, arrange them in a random sequence, let $X=$ \#cords in the correct place

1. $E[X]$
2. $P(x \geqslant 1)$
3. $P(X=0)$
4. Let E_{i} event that the $i^{t h}$ cord is in the conect place. Let X_{i} be the comenandy indicator variable.

$$
\begin{aligned}
X=\sum X_{i} \quad E\left[X_{i}\right] & =0 \cdot P\left(X_{i}=0\right)+1 P\left(X_{i}=1\right) \\
& =P\left(X_{i}=1\right)=P\left(E_{i}\right)
\end{aligned}
$$

time.
Linearity of expectaturi $E[X]=E\left(\Sigma X_{i}\right)=\Sigma E\left[X_{i}\right]$

$$
=\sum_{i=1}^{6} P\left(E_{i}\right)=6 \cdot \frac{1}{6}=7
$$

2.

$$
\text { 2. } \left.\begin{array}{rl}
P(X \geqslant 1)= & P\left(\bigcup_{i=1}^{6} E_{i}\right) \\
= & P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots
\end{array}\right)+P\left(E_{6}\right)-P\left(E_{1} E_{2}\right)-\cdots .
$$

$$
\begin{aligned}
& =1-\frac{6!}{4!2!} \cdot \frac{1}{6} \frac{1}{5}+\frac{6!}{3!3!} \frac{1}{6} \frac{1}{5} \frac{1}{4}-\cdots \\
& =\frac{1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{5!}-\frac{1}{6!}}{} \quad \approx \sum_{i=0}^{\infty}(-1)^{i} \frac{1}{i!}=e^{-1} \\
& \text { 3. } P(x=0)=1-P(x \geqslant 1)=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}
\end{aligned}
$$

Example
n men! n women argued in a circle.
randomly
$X=\#$ men stand next to a woman.
$E[X] \quad E_{i}=$ event that th man is next t to owemae

$$
\begin{aligned}
& X=\sum X_{i} \\
& E[X]=E\left[\sum X_{i}\right]=\sum E\left[X_{i}\right]=\sum_{i=1}^{n} P\left(E E_{i}\right)
\end{aligned}
$$

ith man has two neighbors, chosen randomly from remain $2 n-1$ people, n of whom are women, $n-1$ men. $P\left(E_{i}\right)=1-P\left(\right.$ both reghtrone $\left.\begin{array}{c}\text { men }\end{array}\right)$

$$
\begin{aligned}
& P(\text { both man })=\frac{\binom{n-1}{2}}{\binom{2 n-1}{2}} \\
& E[X]=\sum P\left(E_{i}\right)=\sum_{i=1}^{n} 1-\frac{\binom{n-1}{2}}{\binom{2 n-1}{2}}= \\
& n\left(1-\frac{\binom{n-1}{2}}{\binom{2 n-1}{2}}\right)
\end{aligned}
$$

if arrange in a lie, compute $P\left(E_{i}\right)$ differently depardyon whether $i^{\text {th }}$ person is in end or nut $F_{i}=$ event that $i^{\text {th }}$ man is in middle.

$$
P\left(E_{i}\right)=\underbrace{P\left(E_{i} \mid F_{i}\right)}_{\text {as betre }} P\left(F_{i}\right)+\underbrace{\left(\frac{2 n-2}{2 n}\right)}_{\frac{n}{2 n-1}}\left(E_{i} \mid F_{i}^{c}\right) \quad \underbrace{P\left(F_{i}^{c}\right)}_{\left(\frac{2}{2 n}\right)}
$$

Conditunal Expectatur
Suppose have a bamel of unfair coins equally likely to have any prab. At heads furm 0 to 1
$X=\#$ flipsuntil 2 heads
$E[x]=$?
Gress (conect): greu p, $X_{p}=\#$ flip fracan f type?.

$$
E\left[x_{p}\right]=\frac{2}{p}
$$

$\begin{aligned} & \int_{0}^{1} E\left[X_{p}\right] d p d m y e s . \\ & \text { Philasoply }\end{aligned}$
Philasoply HW : what daes this nex.?

Start wl X, Y discuete

$$
\begin{aligned}
& \text { Ref } P_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{P(x, y)}{P y(y)} \\
& =\frac{P(X=x, Y=y)}{P(Y=y)} \\
& E[X \mid Y=y]=\sum_{x} x P(X=x \mid Y=y)^{P}
\end{aligned}
$$

$$
=\sum \times P_{x \mid y}(x \mid y)
$$

Ex: flip a coin 10 tres get a total of 4 heads $X=\neq c$ leads in frit 5 flips expected oral of X, gree fatal do 4 heads?

$$
\begin{aligned}
& y=\# \text { in scend } 5 \text { flips, } z=x+y=\text { tot } \mid \# \\
& E[X \mid Z=4]=\sum_{x=0}^{5} x P(X=x \mid Z=4) \\
& P(X=x \mid Z=4)=\frac{P(X=x, Z=4)}{P(Z=4)} \\
& =\frac{P(X=x, Y=4-x)}{P(z=4) \longleftarrow\binom{10}{4}\left(\frac{1}{2}\right)^{10}} \\
& =\frac{P(X=x) P(y=4-x)}{\binom{10}{4}\left(\frac{1}{2}\right)^{10}}
\end{aligned}
$$

$$
\begin{aligned}
& E[x \mid z=4]=\sum_{x=0}^{4} x \frac{\binom{5}{x}\binom{5-x}{4}}{\binom{(0)}{4}}
\end{aligned}
$$

Similuly, can Do the contras care (next the)

