5 Identical balls distinuoted to 10 students

$$
L_{51}^{0} \cdot \underbrace{00}_{52} \underbrace{1}_{53} \sum_{54}^{0} \underbrace{\infty}_{55} \ldots \underbrace{0}_{510}
$$

insert divides to keep stolint's property to thanselves

$$
\begin{array}{l|l}
0 & \theta_{0} \\
s_{1} & s_{2}
\end{array}|\cdots| \begin{gathered}
0 \\
s i 0
\end{gathered}
$$

pattern of balls! dividers
$01001101111110 \quad 9$ dines
\#af such patterns
= \#ways to chore which of the 14 symuals ave balls !, which we divides

$$
=\binom{14}{5,9}
$$

Abstract Problem i
How many ways can we chare nonnegative nuwlos $x_{1}, x_{2}, \ldots, x_{n}$ such that $\sum x_{i}=r$ sone r

$$
\begin{gathered}
\text { ansus }=\text { need } n-1 \text { separatars }!r \text { balls } \\
\binom{r+(n-1)}{r, n-1}=\binom{r+n-1}{r}
\end{gathered}
$$

Motinamial Caeficients
Caunts the numls of ways to dishribute abjects into graups.
Gien n labelledldistrugnishible objects to jistribute into k (abetled/aistruymble groas at size $n_{1}, n_{2}, \ldots, n_{k} \quad\left(\sum n_{i}=n\right)$
\# of ways is called $\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}$
Ex $\binom{n}{1,1,1, \ldots, 1}=n!$

$$
\binom{n}{k, n-k}=\binom{n}{k}=\binom{n}{n-k}=\frac{n!}{k!(n-k)!}
$$

$$
\binom{10}{3,3,2,2}=\binom{10}{3}\binom{7}{3,2,2}=\binom{10}{3}\binom{7}{3}\binom{4}{2,2}
$$

frot choase 3 frop $1=\binom{10}{3}\binom{7}{3}\binom{4}{2}\binom{2}{2}$ then disminute remang 7

$$
\begin{aligned}
& =\frac{10!}{3!7!} \frac{7!}{3!4!} \\
& =\frac{10!}{3!3!2!2!}
\end{aligned}
$$

$\underline{\text { Ceneral Fornula }}\binom{n}{n_{1}, n_{21,7}, n_{k}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}$
Why are these called muttinamial coefficuents?

$$
\begin{aligned}
& \left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n} \\
& \text { coeff of } x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}} \text { is }\left(n_{1} \ldots, n_{k}\right) \\
& \left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{10} \text { cactf } . f x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4}^{2}
\end{aligned}
$$

foil!

$$
\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \ldots
$$

$$
x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4}^{2}
$$

chase which 3 terms cont. $\left.\begin{array}{l}x_{1} \\ 113\end{array} \quad \begin{array}{c}10 \\ 3,3,2,2\end{array}\right)$

$$
\begin{aligned}
& \begin{aligned}
3 & - \\
2 & -x_{2} \\
- & x_{3}
\end{aligned} \\
& \text { read ch } 1 \text { ! }
\end{aligned}
$$

Probability (chap 2)
The basic object in probability theory is the probability space
Set $S=$ "sample space" intrpmetad as set of passible
atones of expinemuts atones at expinemuts
subsets of S are called "events"
ext expennt $=f l i p$ a coin 并wi.e.

$$
\begin{aligned}
& S=\{(H, H),(H, T),(T, H),(T, T)\} \\
& E=\{(H, H),(T, T)\}
\end{aligned}
$$

Formally: A probability space consists of 3 datum Set $S=$ sample race
(Callectron Ω af sdisets of S called events)
Fuctun $P: \Omega \longrightarrow \mathbb{R}$
such that same axioms hold:
(D) Ω satifes sone axioms that (wart renter) often $\Omega=$ all subsets

1) $P(E) \in[0,1]$
2) $P(S)=1$
3) If $E_{1}, E_{21}, \ldots, \in \Omega$ and $E_{i} \cap E_{j}=\varnothing$ then $P\left(U E_{i}\right)=\sum_{i} P\left(E_{i}\right)$

Set Theory natator ! apriturs
Fired set $S, E, F, G \subset S$

$$
\begin{aligned}
& E^{c}=S \backslash E=\{x \in S \mid x \notin E\} \\
& E \cup F=E+F=\{x \in S \mid x \in E \text { or } x \circ F\} \\
& E \cap F=E F=\{x \in S \mid x \in E \text { and } x \in F\}
\end{aligned}
$$

Commutatmity, assarativity, dishibutionty:

$$
\begin{aligned}
& E+F=F+E \quad E F=F E \\
& E+(F+G)=(E+F)+G \quad(E F)(-E(F G) \\
& E(F+G)=E F+E G \\
& \text { de Morgan's Laws } \quad\left(E_{1}+E_{2}+\ldots+E_{n}\right)^{c}=E_{1}^{c} E_{2}^{c}-\cdots E_{n}^{c} \\
& \quad\left(E_{1} E_{2} \ldots E_{n}\right)^{c}=E_{1}^{c}+\cdots+E_{n}^{c} \\
& \left(E_{1}+E_{2}\right)^{c}=E_{1}^{c} E_{2}^{c} \lessdot \text { Prove this }
\end{aligned}
$$

Hint

$$
A+B=A+B A^{\circ}
$$

