Country example
Select 5 people randonily from 17 people 10 have Uueshirts 7 red shirts what's the probability that re select 3 ble shirts \& 2 red?
"Samplespenes with equally likely at tomes"
Sample spec $=\{$ sunsets of 5 people form the 17$\}$

$$
P(3 B, 2 R)=\frac{\#\{\text { sunhats ul } 3 B, 2 R\}<\binom{10}{3}\binom{7}{2}}{\# \xi \text { sheets } w 10 \text { pope }\}} \leqslant\binom{ 17}{5}
$$

Alt Sample Spae $=\{$ sequences of 5 people fum 17$\}$

$$
\begin{aligned}
& P(3 B, L R)=\frac{\#\left\{\operatorname { s e q } \omega \left(3 B!2 R 3 \leftarrow\binom{10}{3}\binom{7}{2} S!\right.\right.}{\#\{a q\} \leftarrow 17.16 .15 \cdot 14 \cdot 13}
\end{aligned}
$$

$$
\begin{aligned}
& ; 5!\longrightarrow \text {. }
\end{aligned}
$$

Couditoonal Probability
Goren events E,F, the canditural pochsbility

$$
\begin{aligned}
& P(E \mid F) \text { is diffed as } \frac{P(E F)}{P(F)} \text { fruition of } F \text { which } \\
& \text { is } E F
\end{aligned}
$$

probability of E given that F has ocoured

Ex: Suppose ne flip a cain trice, get at lat ane heads. what's the posh. Hest both flipsom heads?

$$
\begin{aligned}
& S=\{(H,-1),(H, T),(T, H),(T, T)\} \\
& \begin{aligned}
P(\text { two heads } 1 \text { one head })=\frac{P(\text { tue had s })}{P(\geqslant \text { ne had })} & =\frac{(1 / 4)}{(3 / 4)} \\
& =1 / 3
\end{aligned}
\end{aligned}
$$

in careubere all cotzones are chally lilely:

$$
\begin{aligned}
& P(E)=\frac{\# E}{\# S} \\
& P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{\#(E F) / \# S}{\# F / \# S} \\
&=\# E F / \# F \\
& P(E \mid F)=\frac{P(E F)}{P(F)} \Rightarrow P(E F)=P(E / F) P(F)
\end{aligned}
$$

50% chace that dre -1 soll all 6's 50% clyce nyoter $P\left(F \mid E^{c}\right)=\frac{1}{6}$ nall 6 frst soll
what's the prab that ralls Ill 6 's?

$$
P(E F)=P(E)=\frac{1}{2}
$$

F roll 6 in frot roll $P(E \mid F)$

$$
E \text { all } G^{\prime} s . \quad\left(P(F)^{\prime \prime}\right)^{\frac{1}{2}+\frac{1}{2} \frac{1}{b}} P(E)
$$

$$
\begin{array}{|c|c|}
\hline a^{4 \prime 1} \\
c^{\prime} & \cdots-1 \\
\hline
\end{array}
$$

$$
P\left(F(E)=\frac{P(E F)}{P(E)}=1\right.
$$

$$
\begin{aligned}
& P(F \mid E)=\frac{P(E F)}{P(E)} \quad F=F\left(E \cup E^{c}\right)=F E \cup F E^{c} \\
& P(E \mid F)= \frac{P(E F)}{P(F)}=\frac{(1 / 2)}{(7 / 2)} P(E F)=P(E)=\frac{1}{2} \\
& P(F)=P(F E)+P\left(F E^{c}\right)=\frac{1}{2}+\frac{1}{12}=\frac{7}{12} \\
& P\left(F E^{c}\right)=P\left(F \mid E^{c}\right) P\left(E^{c}\right) \\
&=\frac{1}{6} \cdot \frac{1}{2}=\frac{1}{12}
\end{aligned}
$$

$$
\frac{6}{7}
$$

E - die rolls all b's
E^{c} - fair die
$P(E)=\frac{1}{2}$

$$
P\left(E^{c}\right)=\frac{1}{2}
$$

F frost rall is a $6 \quad P(F \mid E)=1$

$$
P\left(F \mid E^{c}\right)=\frac{1}{6}
$$

$P($ second roll is 6 (frit roll is 6)

$$
\begin{gathered}
=\frac{P(\text { both } G)}{P(\text { frit is } 6)}=\frac{P(F G)}{P(F)} \\
E=\text { all } 6 \text { die } \quad F=\text { frost } 6 \\
E^{\prime}=\text { fir die } G=\text { second } 6 \\
P(F G)=P(F G E)+P(F G E C) \\
P(F G E)=P(F G(E) P(E)
\end{gathered}
$$

