Math 477, Lecture 2 class work

Name:

\qquad
Net ID: \qquad

1. Given a class with 10 students, how many ways are there to separate them into 5 groups consisting of 2 students each?

$$
\binom{10}{2,2,2,2,2} \text { if the groups are distinguishible, and } \frac{\binom{10}{2,2,2,2,2}}{5!} \text { otherwise. }
$$

2. If we roll a die 10 times, how many ways can we get exactly 3 ones, 3 twos, 2 threes and 2 fours? What's the probability that this occurs?

There are $\binom{10}{3,3,2,2}$ ways. The probability is $\frac{\binom{10}{3,3,2,2}}{6^{10}}$.
3. Given a class with 10 students, if we distribute 5 identical balls to the class (students are allowed to receive more than 1 ball), what's the probability that no one gets more than 1 ball??
$\frac{\binom{10}{5}}{\binom{14}{5}}$
$\binom{14}{5}$
4. If we roll a die 10 times, how many ways can we get exactly 6 ones? What's the probability that this occurs?

There are $\binom{10}{6} 5^{4}$ ways this can happen. The probability is $\frac{\binom{10}{6} 5^{4}}{6^{10}}$.
5. Let $S=\{1,2,3,4,5,6,7\}, A=\{1,2,3\}, B=\{1,3,4,5\}, C=\{4,5,6\}$. Compute the following sets:
$A B C, \quad A^{c} B C, A B^{c} C, A+B+C,(A+B)^{c} C,(A+B+C)^{c}$

$$
A B C=\emptyset, A^{c} B C=\{4,5\}, A+B+C=\{1,2,3,4,5,6\},(A+B)^{c} C=\{6\}
$$

6. Suppose S is a sample space with subsets A, B, and such that $P(A+B)=0.7, P(A)=P(B)=0.5$. What is $P\left(A B^{c}\right)$? What is $P(A B)$?

$$
P(A B)=0.3=P(A)+P(B)-P(A+B) . P\left(A B^{c}\right)=P(A)-P(A B)=0.2
$$

