## Math 477, Lecture 6 class work

1. If two regular dice are rolled, what's the probability that at least one lands on a 5 , if we know that they both land on different numbers?

Let $E$ be the event that one lands on a 5 , and $F$ the event that they both land on different numbers. We want to calculate $P(F \mid E)$. By definition, we have $P(F \mid E)=P(E F) / P(E)$. Since $E$ is a disjoint union:

$$
\{(5, i) \mid i \neq 5\} \cup\{(i, 5) \mid i \neq 5\} \cup\{(5,5)\}
$$

we see $P(E)=\# E / \# S=(5+5+1) / 36=11 / 36$ and since $E F$ is the equal to the disjoint union

$$
\{(5, i) \mid i \neq 5\} \cup\{(i, 5) \mid i \neq 5\}
$$

we see $P(E F)=\# E F / \# S=10 / 36$. Therefore

$$
P(F \mid E)=P(E F) / P(E)=10 / 11
$$

2. Two numbers $a$ and $b$ are chosen randomly from the set $\{1,2,3,4,5,6\}$ each result being equally likely. Let $A$ be the event that $a+b=7$, and let $B$ be the event that $a$ and $b$ have different parity (that is, one is even and the other is odd). Are $A$ and $B$ independent?

Counting, we see $P(A)=6 / 36=1 / 6, P(B)=1 / 2$ and $A B=A$, since if two numbers have the same parity their sum is even and therefore can't be 7 . Therefore $P(A) P(B)=1 / 12 \neq P(A B)=P(A)=1 / 6$. Therefore the events are not independent.
3. Two numbers $a$ and $b$ are chosen randomly from the set $\{1,2,3,4,5,6\}$ each result being equally likely. Let $A$ be the event that $a$ is odd, and let $B$ be the event that $a$ and $b$ have different parity (that is, one is even and the other is odd). Are $A$ and $B$ independent?

We can check that $P(A)=1 / 2=P(B)=P(A B)$. Therefore since $P(A) P(B)=1 / 4 \neq 1 / 2=P(A B)$, we see that the events are not independent.
4. If a person has a $9 / 10$ chance of a getting a problem right on a given assignment, assuming that the performance on each problem is independent, and that there are 4 problems, what is the probability that the person gets exactly 3 problems correct?

Let $E_{i, j, k}$ be the event that a person gets only problems $i, j, k$ correct (here, $i, j, k \in\{1,2,3,4\}$ ). Then these give $4=\binom{4}{3}$ mutually exclusive events whose union $E$ is the event that a person gets exactly 3 problems correct. We have $P\left(E_{i, j, k}\right)=(1 / 10)(9 / 10)^{3}$, and so $P(E)=4(1 / 10)(9 / 10)^{3}=(2 / 5)(273 / 1000)=$ $546 / 5000 \sim 1 / 10$.
5. If a person has a $9 / 10$ chance of a getting a problem right on a given assignment, assuming that the performance on each problem is independent, and that there are 4 problems, what is the probability that the person gets exactly 2 problems correct?

Let $E_{i, j}$ be the event that a person gets only problems $i, j$ correct (here, $i, j \in\{1,2,3,4\}$ ). Then these give $6=\binom{4}{2}$ mutually exclusive events whose union $E$ is the event that a person gets exactly 2 problems correct. We have $P\left(E_{i, j}\right)=(1 / 10)^{2}(9 / 10)^{2}$, and so $P(E)=6(1 / 10)^{2}(9 / 10)^{2}=(3 / 5)(1 / 10)(81 / 100)=$ $273 / 5000 \sim 1 / 20$.

