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Abstract. Here we define a series of associative algebras attached to a vertex oper-

ator algebra V , called mode transition algebras, showing they reflect both algebraic

properties of V and geometric constructions on moduli of curves. One can define

sheaves of coinvariants on pointed coordinatized curves from V -modules. We show

that if the mode transition algebras admit multiplicative identities with certain prop-

erties, these sheaves deform as wanted on families of curves with nodes (so V satisfies

smoothing). Consequently, coherent sheaves of coinvariants defined by vertex operator

algebras that satisfy smoothing form vector bundles. We also show that mode transi-

tion algebras give information about higher level Zhu algebras and generalized Verma

modules. As an application, we completely describe higher level Zhu algebras of the

Heisenberg vertex algebra for all levels, proving a conjecture of Addabbo–Barron.

Mode transition algebras, defined here, are a series of associative algebras that give

insight into algebraic structures on moduli of stable pointed curves, and representations

of the vertex operator algebras from which they are derived.

Modules over vertex operator algebras (VOAs for short) give rise to vector bundles

of coinvariants on moduli of smooth, pointed, coordinatized curves [FBZ04]. To extend

these to singular curves, coinvariants must deform as expected on smoothings of nodes,

maintaining the same rank for singular curves as for smooth ones. By Theorem 5.0.3,

this holds when coinvariants form coherent sheaves and the mode transition algebras

(defined below) admit multiplicative identities with certain properties. Consequently,

by Corollary 5.2.6 one obtains a potentially rich source of vector bundles, including

as in Remark 5.2.7 (b), the well-known class given by rational and C2-cofinite VOAs

[TUY89, BFM91, NT05, DGT22a], and by Corollary 7.4.1, a new family on moduli of

stable pointed rational curves from modules over the Heisenberg VOA, which is neither

C2-cofinite nor rational. Vector bundles are valuable—their characteristic classes, de-

generacy loci, and section rings have been instrumental in the understanding of moduli

of curves (e.g. [HM82, Mum83, EH87, ELSV01, Far09, BCHM10]).

Known as essential to the study of the representation theory of VOAs, basic questions

about the structure of higher level Zhu algebras remain open. Via Theorem 6.0.1,

the mode transition algebras also give a new perspective on these higher level Zhu

algebras. As an application, we prove [AB22, Conjecture 8.1], thereby giving an explicit

description of the higher level Zhu algebras for the Heisenberg VOA. This is done in

Section 7 by analyzing the mode transition algebras associated to this VOA.
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To describe our results more precisely, we set a small amount of notation, with more

details given in the body of the paper. We assume that V is a vertex operator algebra of

CFT type. While they have applications in both VOA theory and algebraic geometry, we

begin by describing the geometric problem, which motivated the definition of the mode

transition algebras. By [DGK22], the sheaves of coinvariants are coherent when defined

by modules over a C2-cofinite VOA. By [GG12], coherence is also known to hold for

some sheaves given by representations of VOAs that are C1-cofinite and not C2-cofinite.

It is natural then to ask when such coherent sheaves are vector bundles, as they were

shown to be if V is both C2-cofinite and rational [TUY89, BFM91, NT05, DGT22a].

One may check coherent sheaves are locally free by proving they are flat. This may

be achieved using Grothendieck’s valuative criteria of flatness. The standard procedure

(eg. [TUY89, Theorem 6.2.1], [NT05, Theorem 8.4.5], [DGT22a, VB Corollary]), is to

argue inductively, using the factorization property ([TUY89, Theorem 6.2.6], [NT05,

Theorem 8.4.3], [DGT22a, Theorem 7.0.1]). However, by [DGK22, Proposition 7.1],

factorization is not available, since here we do not assume that the VOA is rational or

C2-cofinite. Instead, as explained in the proof of Corollary 5.2.6, the geometric insight

here, is that in place of factorization, one may show that ranks of coinvariants are

constant as nodes are smoothed in families. This relies on the mode transition algebras

admitting multiplicative identities that also act as identity elements on modules (we call

these strong unities). The base case then follows from the assumption of coherence and

that sheaves of coinvariants support a projectively flat connection on moduli of smooth

curves [FBZ04, DGT21].

We refer to this degeneration process as smoothing, which we now summarize. For

simplicity, let C0 be a projective curve over C with a single node Q, n smooth points

P• = (P1, . . . , Pn), and formal coordinates t• = (t1, . . . , tn) at P•. LetW
1, . . . ,Wn be an

n-tuple of V -modules, or equivalently of smooth U -modules, where U is the universal

enveloping algebra associated to V (defined in detail in Section 2).

We assume each V -module W i is generated by a module W i
0 over (the zero level)

Zhu algebra A0(V ) := A. The vector space of coinvariants [W •](C0,P•,t•) is the largest

quotient of W • = W 1 ⊗ · · · ⊗ Wn on which the Chiral Lie algebra LC0\P•(V ) acts

trivially (described here in Section 4). Coinvariants at C0 are related to those on the

normalization η : ‹C0 → C0 of C0 at Q. Namely, by [DGT22a] the map

α0 : W
•
0→W •

0 ⊗ A, u 7→ u⊗ 1A,

gives rise to an LC0\P•(V )-module map, inducing a map between spaces of coinvariants

[α0] : [W
•](C0,P•,t•)→[W • ⊗ Φ(A)]Ä ‹C0,P•⊔Q±,t•⊔s±

ä.
Here Φ(A) is a U -bimodule assigned at points Q± lying over η−1(Q), and s± are formal

coordinates at Q±. By [DGK22], the map [α0] is an isomorphism if V is C1-cofinite.

One may extend the nodal curve C0 to a smoothing family (C , P•, t•) over the scheme

S = Spec(C[[q]]), with special fiber (C0, P•, t•), and smooth generic fiber, while one may

trivially extend ‹C0 to a family ( ‹C , P• ⊔ Q±, t• ⊔ s±) over S. While the central fibers

of these two families of curves are related by normalization, there is no map between
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naturally isomorphic, an essential ingredient in the proof that such sheaves are locally

free under these assumptions [DGT22a].

To obtain an analogous isomorphism of coinvariants under less restrictive conditions,

our main idea is to generalize the algebra structure of Xd ⊗X∨
d ⊂ Φ(A), which exists

for simple admissible V -modules X =
⊕

dXd, and for all d ∈ N (see Example 3.3.2).

Namely, we show that Φ(A) has the structure of a bi-graded algebra, which we call

the mode transition algebra and denote A =
⊕

d1,d2∈ZAd1,d2 . We show that A acts on

generalized Verma modules ΦL(W0) =
⊕

dWd, such that the subalgebras Ad := Ad,−d,

which we refer to as the dth mode transition algebras, act on the degree d components

Wd (these terms are defined in Section 3.1 and Section 3.2).

We say that V satisfies smoothing (Definition 5.0.1), if for every pair (W •,C0), con-

sisting of n admissible V -modules W •, not all trivial, a stable n-pointed curve C0 with

a node, there exist an element I =
∑

d≥0 Idq
d ∈ A[[q]], such that the map

α : W •[[q]] −→ (W • ⊗ A)[[q]], u 7→ u⊗I ,

is an LC \P•(V )-module homomorphism which extends α0.

In Theorem 5.0.3, we equate smoothing for V with a property of multiplicative iden-

tity elements in the dth mode transition algebras Ad, whenever they exist. Specifically,

if Ad admit identity elements Id ∈ Ad for all d ∈ N, satisfying any of the equivalent

properties of Definition/Lemma 3.3.1, then we say that Id ∈ Ad is a strong unity.

Theorem (5.0.3). Let V be a VOA of CFT-type. The algebras Ad = Ad(V ) admit

strong unities for all d ∈ N if and only if V satisfies smoothing.

We remark that the analogue to α is called the sewing map in [TUY89, NT05,

DGT22a]. As an application of Theorem 5.0.3, we obtain geometric consequences stated

as Corollary 5.2.1 and Corollary 5.2.6. A particular case of which is as follows:

Corollary (5.2.6). If V is C2-cofinite and satisfies smoothing, then V(V ;W •) is a

vector bundle onMg,n for simple V -modules W 1, · · · ,Wn.

By Example 3.3.2, rational VOAs satisfy smoothing, so Corollary 5.2.6 specializes

to [DGT22a, VB Corollary]. As is shown in Corollary 7.4.1, one can apply the full

statement of Corollary 5.2.6 to show that modules over the Heisenberg VOA (which

is C1-cofinite, but neither C2-cofinite nor rational), define vector bundles on moduli of

stable pointed rational curves (see Corollary 7.4.1).

Theorem 6.0.1, described next, gives further tools for investigating other VOAs which

may or may not satisfy smoothing by providing information about the relationship be-

tween mode transition algebras and higher level Zhu algebras and their representations.

Recall that in [Zhu96] Zhu defines a two step induction functor, which in the first

part takes A = A(V )-modules to a V -modules through a Verma module construction,

and then in the second step takes a quotient. In Definition 3.1.1 we describe this first

step with a different, although naturally isomorphic functor ΦL, a crucial ingredient to

this work. Through this functor (naturally isomorphic to) ΦL, Zhu shows that there is a
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bijection between simple A-modules and simple V -modules, so that if A is finite dimen-

sional, and semi-simple, ΦL describes the category of admissible V -modules. However, if

A is either not finite-dimensional or is not semi-simple, then there are indecomposable,

but non-simple V -modules not induced from simple indecomposable modules over A via

ΦL. To describe such modules, [DLM98] defined the higher level Zhu algebras Ad for

d ∈ N , further studied in [BVWY19a].

The mode transition algebras Ad are related to the higher level Zhu algebras Ad. For

instance, A0 = A0 = A (Remark 3.2.4), and by Lemma B.3.1, there is a sequence

(1) Ad
µd−→ Ad

πd−→ Ad−1 −→ 0,

which is always right exact and which, by Part (a) of Theorem 6.0.1 is split exact

if Ad admits a unity (and not necessarily a strong unity). In particular, if V is C2-

cofinite, as observed in [Buh02, GN03, Miy04, He17], the dth mode algebras Ad are

finite dimensional, hence if Ad has a unity, it will be finite dimensional as well.

We note that (1) may be exact when Ad does not admit a unity. For instance, in

Section 8 we show exactness of (1) when d = 1 for the non-discrete series Virasoro VOA

Virc and use it to show that A1 does not admit a unity. In particular, by Theorem 5.0.3,

one finds that Virc satisfies smoothing if and only if c is in the discrete series.

Theorem 6.0.1 allows one to use the mode transition algebras to obtain other valuable

structural information about the higher level Zhu algebras.

Theorem (6.0.1). (a) If the dth mode transition algebra Ad admits a unity, then

(1) is split exact, and Ad
∼= Ad × Ad−1 as rings. In particular, if Ad admits a

unity for every d ∈ Z≥0 then Ad
∼= Ad ⊕ Ad−1 ⊕ · · · ⊕ A0.

(b) For A = A(V ), if the Ad admits a strong unity for all d ∈ N, so that smoothing

holds for V , then given any generalized Verma module W = ΦL(W0) = ⊕d∈NWd

where L0 acts on W0 as a scalar with eigenvalue cW ∈ C, there is no proper

submodule Z ⊂W with cZ − cW ∈ Z>0 for every eigenvalue cZ of L0 on Z.

We refer to Section 3.1 for a discussion about generalized Verma modules.

We note that by Lemma B.3.1 and Theorem B.3.3, the right exact sequence (1) as well

as Part (a) of Theorem 6.0.1 hold for generalized higher Zhu algebras and generalized

dth mode transition algebras (see Definition B.1.1 and Definition B.2.6). For further

discussion see Section 9.3.

We now describe some further consequences of Theorem 5.0.3 and Theorem 6.0.1.

In Section 7 we describe the dth mode transition algebras Ad for the Heisenberg

vertex algebra Ma(1) (denoted π in [FBZ04]), and show the Ad admit strong unities for

all d ∈ N. In particular, Theorem 6.0.1 and Proposition 7.2.1 imply that the conjecture

of Addabbo and Barron [AB22, Conj 8.1] holds, and one can write

Ad(π) = Ad(Ma(1)) ∼=
d⊕

j=0

Matp(j)(C[x]),

where p(j) is the number of ways to decompose j into a sum of positive integers,

with p(0) = 1. The level one Zhu algebra A1(Ma(1)) was first constructed in the
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paper [BVWY19b], and then later announced in [BVWY19a]. In [AB23] the authors

determine A2(Ma(1)) using the infrastructure for finding generators and relations for

higher level Zhu algebras they had developed in [AB22].

In Section 9.1.2, we use Part (b) of Theorem 6.0.1 to show that the family of triplet

vertex operator algebras W(p) does not satisfy smoothing. We do this by giving an

explicit pair of modules W ⊂ Z with W = ΦL(W0) and such that cZ > cW . The actual

pair of modules used was suggested to us by Thomas Creutzig (with some details filled

in by Simon Wood). Dražen Adamović had also sketched for us the existence of such an

example. The importance of this example is that it establishes that smoothing is not

guaranteed to hold for a C2-cofinite VOA if rationality is not assumed. In particular,

while sheaves of coinvariants defined by the representations of C2-cofinite VOAs are

coherent, this can be seen as an indication that they may not necessarily be locally

free. Taken together with the family of Heisenberg vector bundles from Corollary 7.4.1,

this example illustrates the subtlety of the problem of determining which sheaves of

coinvariants define vector bundles.

We also expect that smoothing will not hold for the family of symplectic fermion

algebras SF+
d which are C2-cofinite and not rational, since SF+

1 = W(2). It is natural

to ask whether there is an example of a vertex operator algebra that is C2-cofinite, is

not rational, and satisfies smoothing (see Section 9.1).

Finally, we emphasize that our procedure to use smoothing to show that sheaves of

coinvariants are locally free is just one approach to this problem (see Section 9.2).

Plan of the paper. In Section 1, we set the terminology used here for vertex operator

algebras and their representations. In Section 2, we provide detailed descriptions of the

universal enveloping algebra U associated to a vertex operator algebra V . Technical

details are given in Appendix A, where an axiomatic treatment of the constructions of

the graded and filtered enveloping algebras as topological or semi-normed algebras is

given. The concepts discussed involving filtered and graded completions can be found

throughout the VOA literature (for instance in [TUY89, FZ92, FBZ04, Fre07, NT05,

MNT10]), but little is said about how they relate to one another. We discuss these

relations in Section 2. In Section 3 we give an alternative construction of the generalized

Verma module functor ΦL (and the right-analogue ΦR) from the category of A-modules,

to the category of smooth left (and right) U -modules. We use a combination of ΦL

and ΦR to define the mode transition algebras Ad ⊂ A. More general versions of these

constructions are defined in Appendix B, where their analogous properties are proved.

In Section 4, smoothing is formally defined, and we describe sheaves of coinvariants

on families of pointed and coordinatized curves in general terms, and cite the relevant

references. In Section 5 we prove Theorem 5.0.3, Corollary 5.2.1, and Corollary 5.2.6.

In Section 6 we prove Theorem 6.0.1 Part (b), while Part (a) is detailed in Appendix B.

In Section 7 we compute the mode transition algebras Ad for the Heisenberg algebra

for all d. In Section 8 we compute the 1st mode transition algebras for the non-discrete

series Virasoro VOAs. We ask a number of questions in Section 9. In Section 9.1 and

in Section 9.2 questions are discussed about C2-cofinite and non-rational VOAs that
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may not satisfy smoothing, and whether their induced sheaves of coinvariants may still

define vector bundles. Finally, as noted, many of the results here are stated and proved

for generalizations of higher level Zhu algebras and of mode transition algebras, and

in Section 9.3 we raise the question of finding other examples and applications of such

algebraic structures, beyond those naturally associated to a vertex operator algebra.
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1. Background on Vertex operator algebras and their modules

In Section 1.1 we state the conventions we follow for vertex operator algebras and

their representations. Throughout this paper, by an algebra we mean an associative

algebra which is not necessarily commutative and by a ring we mean an algebra over

Z. We refer to [FZ92, Zhu96, BFM91, NT05] for more details about vertex operator

algebras and their modules.

1.1. VOAs and their representations. We recall here the definition of a vertex

operator algebra of CFT type, which in the paper will be simply denoted VOA.

Definition 1.1.1. A vertex operator algebra of CFT-type is four-tuple (V,1, ω, Y (·, z)):
(a) V =

⊕
i∈N Vi is a vector space with dimVi <∞, and dimV0 = 1;

(b) 1 is an element in V0, called the vacuum vector ;

(c) ω is an element in V2, called the conformal vector ;

(d) Y (·, z) : V → End(V )[[z, z−1]] is a linear map a 7→ Y (a, z) :=
∑

m∈Z a(m)z
−m−1.

The series Y (a, z) is called the vertex operator assigned to a ∈ V ,

satisfying the following axioms:

(a) (vertex operators are fields) for all a, b ∈ V , a(m)b = 0, for m≫ 0;

(b) (vertex operators of the vacuum) Y (1, z) = idV , that is

1(−1) = idV and 1(m) = 0, for m ̸= −1,

and for all a ∈ V , Y (a, z)1 ∈ a+ zV [[z]], that is

a(−1)1 = a and a(m)1 = 0, for m ≥ 0;

(c) (weak commutativity) for all a, b ∈ V , there exists an N ∈ N such that

(z1 − z2)N [Y (a, z1), Y (b, z2)] = 0 in End(V )[[z±1
1 , z±1

2 ]];

(d) (conformal structure) for Y (ω, z) =
∑

m∈Z ω(m)z
−m−1,[

ω(p+1), ω(q+1)

]
= (p− q)ω(p+q+1) +

c

12
δp+q,0 (p

3 − p) idV .
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Here c ∈ C is the central charge of V . Moreover:

ω(1)|Vm = m · idV , for all m, and Y
(
ω(0)a, z

)
=

d

dz
Y (a, z).

Definition 1.1.2. An admissible V -modules is an C-vector space W together with a

linear map

Y W (·, z) : V → End(W )[[z, z−1]], a ∈ V 7→ Y W (a, z) :=
∑
m∈Z

aW(m)z
−m−1,

which satisfies the following axioms:

(a) (vertex operators are fields) if a ∈ V and u ∈W , then aW(m)u = 0, for m≫ 0;

(b) (vertex operators of the vacuum) Y W (1, z) = idW ;

(c) (weak commutativity) for all a, b ∈ V , there exists an N ∈ N such that for all

u ∈W
(z1 − z2)N

î
Y W (a, z1), Y

W (b, z2)
ó
u = 0;

(d) (weak associativity) for all a ∈ V and u ∈ W , there exists an N ∈ N, such that

for all b ∈ V , one has

(z1 + z2)
N
Ä
Y W (Y (a, z1)b, z2)− Y W (a, z1 + z2)Y

W (b, z2)
ä
u = 0;

(e) (conformal structure) for Y W (ω, z) =
∑

m∈Z ω
W
(m)z

−m−1, one hasî
ωW
(p+1), ω

W
(q+1)

ó
= (p− q)ωW

(p+q+1) +
c

12
δp+q,0 (p

3 − p) idW .

where c ∈ C is the central charge of V . Moreover Y W (L−1a, z) =
d
dzY

W (a, z);

(f) (N-gradability)W admits a gradingW =
⊕
n∈N

Wn with aW(m)Wn ⊂Wn+deg(a)−m−1.

As one can see in the literature, e.g. by [DL93, FHL93, LL04, Li96], weak associativity

and weak commutativity together are equivalent to the Jacobi identity : for ℓ, m, n ∈ Z,
and a, b ∈ V∑

i≥0

(−1)i
Ç
ℓ

i

å
aW(m+ℓ−i)b

W
(n+i) − (−1)ℓbW(n+ℓ−i)a

W
(m+i) =

∑
i≥0

Ç
m

i

å
(a(ℓ+i)(b))

W
(m+n−i).

Moreover, by [DLM97, Lemma 2.2], axiom (e) is redundant.

2. The universal enveloping algebra of a VOA

Here we describe constructions of the universal enveloping algebra associated to a

VOA V , as quotients of certain graded, as well as (left and right) filtered completions of

the universal enveloping algebra of the Lie algebra associated to V . Filtered completions

are essential to our constructions, as they are compatible with crucial restriction maps

from the Chiral Lie algebra to certain ancillary Lie algebras, allowing for the definition

of the action of the Chiral Lie algebra on (tensor products of) V -modules. The graded

completion, on the other hand, allows both for ease in computation, and simpler de-

scriptions of induced modules, and bimodules, and in Section 3.2 of the mode transition

algebras. While these concepts are treated in one way or another throughout the VOA

literature, for instance in [FZ92, FBZ04, Fre07, NT05, MNT10], we provide here and

in Appendix A, a uniform description, where many details are given, clarifications are
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made, and the different constructions are compared to one another. We further remark

that, although this section assumes that V is a vertex operator algebra, however all the

arguments and construction here in Section 2 hold assuming only that V is a graded

vertex algebra since the conformal structure does not play a role (see also Section 9.3).

2.1. Graded and filtered completions. We recall the constructions of the universal

enveloping algebra [FZ92] and the current algebra [NT05] associated to a VOA V .

2.2. Split filtrations. The underlying vector spaces of the objects we will need to con-

sider will either be graded or filtered (sometimes both), and these filtrations and gradings

will be related to each other. The basic example of this is the space of Laurent polynomi-

als C[t, t−1] which we choose to grade by C[t, t−1]n = Ct−n−1, and the space of Laurent

series C((t)), which admits an increasing filtration by setting C((t))≤n := t−n−1C[[t]]. We

will refer to this filtration as a left filtration of C((t)) (see Definition A.1.1). In this

situation, when we have a graded subspace of a filtered space C[t, t−1] ⊂ C((t)) which

identifies the degree n part of the graded subspace with the degree n part of the asso-

ciated graded space, we say that this pair gives a split filtration (see Definition A.1.6).

Similarly, we refer to the filtration of C((t−1)) given by C((t−1))≥n = tn−1C[[t−1]] as a

right filtration, and the pair C[t, t−1] ⊂ C((t−1)) is also a split filtration.

2.3. Let V be a VOA (or a graded vertex algebra). Since it is a graded vector space,

it admits a trivial left (respectively right) split-filtration, given by V≤n = ⊕d≤nVd (re-

spectively V≥n = ⊕d≥nVd). In view of Definition/Lemma A.2.2, tensor products of

split-filtered modules are naturally split-filtered, and consequently

V ⊗C C[t, t−1] ⊂ V ⊗C C((t)) and V ⊗C C[t, t−1] ⊂ V ⊗C C((t−1))

define splittings of their left and right filtrations.

Remark 2.3.1. Concretely, we can define the map val : V ⊗ C((t))→ Z by

val(a⊗ f(t)) = deg(a)−N − 1.

for a homogeneous element a ∈ V and f(t) ∈ tNC[[t]] \ tN−1C[[t]]. The natural left

filtration on V ⊗C C((t)) is then given by (V ⊗ C((t)))≤n := val−1(−∞, n].

The linear map ∇ = L−1 ⊗ id + id ⊗ d
dt is a linear endomorphism of each of these

spaces of degree −1 (see Definition A.1.10). We define

L(V )L =
V ⊗C C((t))

Im(∇)
, L(V )R =

V ⊗C C((t−1))

Im(∇)
, and L(V )f =

V ⊗C C[t, t−1]

Im(∇)
.

These have induced split-filtrations via L(V )f ⊂ L(V )L,L(V )R by Lemma A.1.14. These

filtered and graded vector spaces admit (filtered and graded) Lie algebra structures, with

Lie brackets defined by:

[a⊗ f(t), b⊗ g(t)] :=
∑
k≥0

1

k!

(
a(k)(b)

)
⊗ g(t)d

k(f(t))

dtk
,

for all a, b ∈ V and f(t), g(t) ∈ C((t)) or f(t), g(t) ∈ C((t−1)).
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More concretely in the case of L(V )f , for a ∈ V and i ∈ Z we denote by a[i] the class

of the element a ⊗ ti in L(V )f ⊂ L(V )L,L(V )R. The restriction of the Lie bracket on

L(V )f then is given by the following formula

[
a[i], b[j]

]
:=

∑
k≥0

Ç
i

k

å (
a(k)(b)

)
[i+j−k]

,

for all a, b ∈ V and i, j ∈ Z. Extending the notation introduced in [DGT22a], we call

L(V )L and L(V )R the left and right ancillary Lie algebras and L(V )f the finite ancillary

Lie algebra. Note that L(V )L is isomorphic to the current Lie algebra g(V ) from [NT05].

2.4. We now letU L,U R,U be the universal enveloping algebras of L(V )L,L(V )R,L(V )f

respectively. These enveloping algebras are left filtered, right filtered, and graded respec-

tively, and we note that U ⊂ U L,U R again give splittings to the respective filtrations

(see Lemma A.3.4). In the language of Definition A.9.1 we will say that (U L,U ,U R)

forms a good triple of associative algebras.

Example 2.4.1. These induced filtrations can be explicitly described. For instance

we have that Ud is linearly spanned by elements ℓ1 · · · ℓk such that ℓi ∈ L(V )fdi and∑
i di = d (and k possibly zero if d = 0). Analogously (U L)≤d is linearly spanned by

elements ℓ1 · · · ℓk such that ℓi ∈ L(V )≤di and
∑

i di = d (and k possibly zero if d ≥ 0).

These enveloping algebras have an additional structure of a topology induced by

seminorms, which can be described in terms of systems of neighborhoods of 0 (as in

Definition A.4.1 and Remark A.4.2). These neighborhoods of the identity are given by

left ideals Nn
LU

L of U L and Nn
LU of U and right ideals Nn

RU
R of U R and Nn

RU of U

defined by:

Nn
LU

L = U LU L
≤−n, Nn

LU = UU≤−n, Nn
RU

R = U R
≥nU

R, Nn
RU = U≥nU .

This definition coincides with that of a canonical seminorm on a (split-)filtered algebra,

as described in Definition A.6.1, and in particular gives a good seminorm on the triple

(see Definition A.9.3 and Remark A.9.7). Most useful for us is that the category of

good triples of algebras with good seminorms is closed under quotients and completions

(Corollary A.9.9 and Corollary A.9.10).

We can restrict these seminorms to various filtered and graded parts of these alge-

bras as in Definition A.4.4. For example, we write Nn
LU

L
≤p to denote Nn

L(U
L) ∩ U L

≤p.

Concretely we obtain systems of neighborhoods as follows (see Lemma A.3.2 for more

details):

Nn
LU

L
≤p = (U LU L

≤−n)≤p =
∑
j≤−n

U L
≤p−jU

L
≤j , Nn

RU
R
≥p = (U R

≥nU
R)≥p =

∑
i≥n

U R
≥iU

R
≥p−i

Nn
LUp = (UU≤−n)p =

∑
j≤−n

Up−jUj , and Nn
RUp = (U≥nU

R)p =
∑
i≥n

UiUp−i.

We note that in particular, we have Nn+p
R Up = Nn

LUp. Through the restriction of the

seminorm to these subspaces, we then define a filtered completions of U L and U R, both



10 C. DAMIOLINI, A. GIBNEY, AND D. KRASHEN

containing a graded completion of U (see Definition/Lemma A.5.6). Specifically, we set“U L
d := lim←−

n

U L
≤d

Nn
LU

L
≤d

, “U R
d := lim←−

n

U R
≥d

Nn
LU

R
≥d

, “Ud := lim←−
n

Ud

Nn
LUd

= lim←−
n

Ud

Nn+d
R Ud

,

And set “U L :=
⋃
d

“U L
d ,

“U R :=
⋃
d

“U R
d ,

“U :=
⊕
d

“Ud.

As previously mentioned, it follows from Corollary A.9.10 that this will result in a good

triple (“U L,“U ,“U R) of associative algebras with good seminorms.

Finally, one may construct a graded ideal J of “U generated by the Jacobi relations,

namely J is generated by for ℓ, m, n ∈ Z, and a, b ∈ V , by∑
i≥0

(−1)i
Ç
ℓ

i

å
a[m+ℓ−i]b[n+i] − (−1)ℓb[n+ℓ−i]a[m+i] =

∑
i≥0

Ç
m

i

å
(a(ℓ+i)(b))[m+n−i].

If we let JR and JL be the ideals of “U R and “U L generated by J , and we let J, J
R
, J

L

be the respective closures (see Definition/Lemma A.5.10), then we find that (J
L
, J, J

R
)

form a good triple (of nonunital algebras) by Lemma A.9.5 and Lemma A.9.6. Finally,

by Corollary A.9.9, we find that the resulting quotient algebras

U L = “U L/J
L
, U = “U /J, U R = “U R/J

R
,

form a good triple of associative algebras with good seminorms (actually norms).

Definition 2.4.2. We call U L,U R,U the left, right and finite universal enveloping

algebras of V , respectively.

We note that a V -module corresponds, in this language, to a U -module W (or a

U L-module) such that the action of this normed (and hence topological) algebra is

continuous. That is, such that the multiplication map

U ×W →W or equivalently, U L ×W →W

is continuous, where W is given the discrete topology, and U and U L are topologized

according to their norms.

2.4.3. Relation to the literature. We note that U coincides with the universal envelop-

ing algebra of V introduced in [FZ92], while we can identify U L with the current

algebra introduced in [NT05] or with the universal enveloping algebra ‹U(V ) introduced

in [FBZ04], with a minor modification (see [Fre07, footnote on p.74]).

2.5. Subalgebras and subquotient algebras. We describe here some algebras built

from the algebras U ,U L,U R which will play a special role. By definition, U L
≤−n ◁U L

≤0

and U R
≥n ◁U R

≥0 are two-sided ideals when n > 0 with

U L
≤0/U

L
≤−1
∼= U0

∼= U R
≥0/U

R
≥1,

by the fact that these algebras are part of a good triple. We now look more closely at

U0, which forms a subring of U . As our triple of algebras is good, the seminorms on our

algebras are almost canonical (Definition A.6.8), and in particular by Definition A.6.8(c),

it follows that Nn
LU0 = Nn

RU0 for every n, so that there is no ambiguity in denoting
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these neighborhoods by NrU0. We also see in the same way that NrU0 is a two-sided

ideal of U0.

Definition 2.5.1. The dth higher level Zhu algebra of V is the quotient

Ad(V ) = U0/N
d+1U0.

For an element α ∈ U0, we will write [α]d for its image in Ad(V ). When V is understood,

we will denote Ad(V ) simply by Ad.

2.5.2. Relation to the literature. In [Zhu96] the author defines an associative algebra,

now referred to as the (zeroth) Zhu algebra as the quotient of V by an appropriate

subspace O(V ). In [FZ92, NT05] it is shown that this algebra is isomorphic to an

appropriate quotient of the degree zero piece of the universal enveloping algebra of V

(or of the current algebra of V ). As mentioned in the introduction, higher level Zhu

algebras Ad have been introduced in [DLM98] as quotients of V by subspaces Od(V ),

and proved to be realized as quotients of the degree zero piece of the universal enveloping

algebra of V in [He17]. We notice further that the map that realizes the isomorphism

between V/Od(V ) and Ad is explicitly realized by identifying [a] ∈ V/Od(V ) with the

class of the element adeg(a)−1 in U0/N
d+1U0 for every homogeneous element a ∈ V .

3. Induced modules and the mode transition algebra

The constructions and results discussed here are true in greater generality, as detailed

in Appendix B.1 and in Appendix B.2. For instance, as in Section 2, the constructions

mentioned in Section 3.1 and in Section 3.2 hold for a graded vertex algebra. The

conformal structure is however used in Section 3.4.

3.1. Induced modules. As is the convention, throughout we denote A0 by A.

Definition 3.1.1. For a left module W0 over A, we define the left generalized Verma

module ΦL(W0) as

(2) ΦL(W0) =

∞⊕
p=0

ΦL(W0)p =
(
U /N1

LU
)
⊗U0 W0

∼=
Ä
U L/N1

LU
L
ä
⊗U0 W0.

For Z0 a right module over A, we define the right generalized Verma module ΦL(W0) as

(3) ΦR(Z0) =
∞⊕
p=0

ΦL(Z0)−p = Z0 ⊗U0

(
U /N1

RU
) ∼= Z0 ⊗U0

Ä
U R/N1

RU R
ä
.

We note that this is well defined. In fact, the claimed isomorphisms of (2) and (3)

follow from Lemma A.8.1, while the grading is explained in Remark B.1.6.

Moreover, from Lemma A.8.1 we have that U /N1
LU

∼= U L/N1
LU

L, so that this

quotient can be regarded both as a (U ,U0) bimodule and as a (U L,U0) bimodule. In

particular, this shows that the ancillary algebra acts on the left on ΦL(W0).

These have a universal property that we describe in Proposition 3.1.2 and proved in

Proposition B.1.4. Given a left U -module W , we define an An-module Ωn(W ) by

Ωn(W ) = {w ∈W | (Nn+1
L U)w = 0}.
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Proposition 3.1.2. Let M be a U -module and W0 an Ad-module. Then there is a

natural isomorphism of bifunctors:

HomAd
(W0,Ωd(M)) = HomU (ΦL

d(W0),M).

Remark 3.1.3. If W0 if finite dimensional over C, and if V is C1-cofinite, then there

are a finite number of elements x1, x2, . . ., xr ∈ V such that ΦL(W0) is spanned by

elements of the form

x1(−m1)
· x2(−m2)

· · ·xr(−mr)
⊗ u,

for some u ∈W0 and positive integers m1 ≥ m2 ≥ · · · ≥ mr ≥ 1.

3.1.4. Relation to the literature. By the universal property in Proposition 3.1.2, the

functor ΦL is naturally isomorphic the functor denoted M0 in [Zhu96, page 258],

[DLM98, (4.4)], and [BVWY19a, page 3301]. Moreover, one can relate ΦL to Qn(d)

from [MNT10], which in the language used here, can be written Qn(d) = Ud/N
n
LUd. In

particular for n = 1 this gives the degree d part of a generalized Verma module

ΦL(W0)d = Ud/N
1
LUd ⊗U0 W0 = Q1(d)⊗U0 W0.

In [MNT10, Eq 2.6.1] a series of sub-algebras (called Quasi-finite algebras) of the uni-

versal universal enveloping algebra is defined for all d ∈ N, and by [MNT10, Thm 3.3.4]

if V is C2-cofinite, then for d ≫ 0 there is an equivalence of categories of Ad-modules

and (admissible) V -modules.

3.2. Mode transition algebras and their action on modules. In this section we

introduce the mode transition algebra A(V ) associated with a vertex operator algebra

V . A general treatment of these algebras is developed in Appendix B, while we will

list here the principal consequences of the general theory. We begin by introducing the

space underlying A(V ), often denoted A when V is understood.

Definition 3.2.1. Let V be a VOA and A = A0 be the Zhu algebra associated to V .

We define A = A(V ) to be the vector space

A = ΦR(ΦL(A)) = ΦL(ΦR(A)) =
(
U /N1

LU
)
⊗U0 A⊗U0

(
U /N1

RU
)
.

Moreover, using the notation Ad1,d2 =
(
U /N1

LU
)
d1
⊗U0 A⊗U0

(
U /N1

RU
)
d2

we write

A =
⊕

d1∈Z≥0

⊕
d2∈Z≤0

Ad1,d2 .

The isomorphism described in the following Lemma is crucial to the definition of an

algebra structure on A. We refer to Lemma B.2.1 for its proof.

Lemma 3.2.2. There is an isomorphism:(
U /N1

RU
)
⊗U

(
U /N1

LU
)
→ A

α⊗ β 7→ α ⃝⋆ β

where, for α, β ∈ U homogeneous, we define α ⃝⋆ β as :

α ⃝⋆ β =

0 if deg(α) + deg(β) ̸= 0

[αβ]0 if deg(α) + deg(β) = 0
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and we extend the definition to general products by linearity.

Example 3.2.3. We explicitly describe the element α ⃝⋆ β ∈ A when α and β are

homogeneous elements of opposite degrees. Three cases can occur:

• deg(α) < 0. It follows that deg(β) > 0 and so αβ ∈ N1U0, which gives α⃝⋆ β = 0.

• deg(α) = 0 = deg(β). We have that α ⃝⋆ β = [α]0 · [β]0 since the map U0 → A0

is a ring homomorphism.

• deg(α) > 0. We first rewrite αβ = βα+ [α, β]. Since βα ∈ N1U0, we have that

α ⃝⋆ β coincide with [ [α, β] ]0.

Note that if α, β ∈ L(V )f , then [α, β] ∈ L(V )f0, so the above description tells us that

α ⃝⋆ β is computed via the standard map L(V )f0 → A described in [Li94].

Remark 3.2.4. We note that one has that A0,0 = A. Indeed, by the definitions

A0,0 =
(
U /N1

LU
)
0
⊗U0

(
U0/N

1U0

)
⊗U0

(
U /N1

RU
)
0
∼= A⊗A A⊗A A ∼= A.

We will next simultaneously describe the algebra structure on A, and the action of

this algebra A on generalized Verma modules.

Definition 3.2.5. Let W0 be an A-module. Following Definition B.2.4 we define the

map A×ΦL(W0)→ ΦL(W0) as follows. For a = u⊗ a⊗ u′ ∈ A and β⊗w ∈ ΦL(W0) we

set

a ⋆ (β ⊗ w) := u⊗ a(u′ ⃝⋆ β)w.

By Definition 3.2.5 this map defines an algebra structure on A and ΦL(W0) becomes

a left A-module. Moreover the subspace Ad := Ad,−d is closed under multiplication,

hence it defines a subalgebra of A. The following is a special case of Definition B.2.6.

Definition 3.2.6. We call A(V ) = A = (A,+, ⋆) the transition mode algebra of V , and

Ad = (Ad,+, ⋆) the d-th transition mode algebra of V .

Remark 3.2.7. We observe that the underlying vector space and the algebra structure

of A(V ) does not depend on the existence of a conformal structure on V . Therefore

A(V ) can be defined for every graded vertex algebra V .

We refer to Example 3.3.2 for an explicit description of the algebra structure of A(V )

when V is a C2-cofinite and rational vertex operator algebra. The following assertion

is straightforward

Remark 3.2.8. Let W0 be an A0-module. Then the action of Ad on ΦL(W0)d factors

through the action of Ad described in Definition 3.2.5 via the map µd.

3.2.9. Relation to the literature. In [DJ08] a series of unital associative algebras Ae,d,

defined as quotients of V , with Ad,d
∼= Ad. By Definition 3.2.5, the Ad act on the degree

d part of an induced module W = ΦL(W0), as is true for the Ae,d, although they differ.

In [Hua20], a related series of associative algebras Ad(V ) is defined. These contain

higher level Zhu algebras as sub-algebras, and act on (the sum of) components of a

module up to degree d. In [Hua21], relations are established between bimodules for

these associative algebras and (logarithmic) intertwining operators, and using these, in

[Hua23], modular invariance of (logarithmic) intertwining operators is proved.
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3.3. Strong unital action of Ad on modules. The A0 = A has a unity given by the

image of 1[−1], denoted 1. On the other hand, as we show in Section 8, for d ∈ Z>0, the

Ad may not admit multiplicative identity elements. However, if there are unities in Ad

for all d ∈ N, we have the following results about them.

Definition/Lemma 3.3.1. Let M be an A-module, and assume that for every d ∈ N
the ring Ad is unital, with unity Id ∈ Ad. We say that Id is a strong unity for every d

if one of the following equivalent conditions is verified:

(1 ) For every d,n,m ∈ N, for all u ∈ L(V )d, and a ∈ An,−m one has

(u ·In) ⋆ a = u · a and a ⋆ (Im · u) = a · u.

(2 ) For every n,m ∈ N and for every a ∈ An,−m one has In ⋆ a = a = a ⋆Im.

(3 ) For every d ∈ N the homomorphism Ad → End(ΦL(A)d) is unital;

(4 ) For every d ∈ N, the homomorphism Ad → End(ΦL(A)d) is unital and injective.

(5 ) For every d ∈ N and M an A-module, the homomorphism Ad → End(ΦL(M)d)

is unital.

Proof. We prove these conditions are equivalent. Since (4 ) implies (3 ) and (5 ) implies

(3 ), it will be enough to show the following implications:

(1 ) ⇔ (2 ) ⇔ (3 ) ⇒ (5 ) and (3 ) ⇒ (4 )

(1 ) ⇒ (2 ): this follows by taking d = 0 and u = 1.

(2 ) ⇒ (1 ): This follows from Proposition B.2.5.

(2 ) ⇒ (3 ): This follows from the identification of ΦL(A)d with Ad,0.

(3 ) ⇒ (2 ): By linearity, we can assume that a ∈ An,−m is represented by an element

of the form u⊗ a⊗ v with u ∈ U L
n , v ∈ U R

−m and a ∈ A. Then

In ⋆ (u⊗ a⊗ v) = In ⋆ (u⊗ a⊗ 1) · (v) = (In ⋆ (u⊗ a))⊗ v = (u⊗ a⊗ 1) · v = u⊗ a⊗ v

where (3 ) ensures that the third equality holds.

(3 ) ⇒ (5 ): By linearity we can assume that an element of ΦL(M)d is given by u⊗m
for u ∈ U L

d and m ∈M . Hence we obtain Id ⋆ (u⊗m) = (Id ⋆ u)⊗m = u⊗m.

(3 ) ⇒ (4 ): By Definition 3.2.5 the action of an element a ∈ Ad via ⋆ on Ad ⊆ A =

ΦL(ΦR(A)) = ΦL(A) ⊗U0

(
U /N1

RU
)
is determined by the action of a on ΦL(A). In

particular, as the former is injective when we have a unity, the latter must be injective

in this case as well. □

Example 3.3.2. For V a rational VOA, A is finite and semi-simple, and has a bimodule

decomposition A ∼=
⊕

W0∈W0
W0 ⊗W∨

0 , where W0 is the set of (finitely many) isomor-

phism classes of simple A-modules. If V is also C2-cofinite, A =
⊕

W∈W W ⊗C W
′,

where W is the set of isomorphism classes of simple V -modules (in bijection with W0).

Here W = ΦL(W0) ∼=
⊕

d≥0Wd, and W
′ = ΦR(W0) =

⊕
d≥0HomC(Wd,C), the module

contragredient to W . Using this, the ⋆-product is induced, by linearity, from

(aW ⊗ φWd
) ⋆ (bMe ⊗ ψM ) =

φWd
(bMe)(aW ⊗ ψW ) if W =M and e = d

0 otherwise,
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where φWd
: Wd → C and bMe ∈Me. Under these assumptions, for all d ∈ Z≥0,

Ad =
⊕
W∈W

HomC(Wd,Wd),

admit strong unities 1d :=
⊕

W IdWd
.

3.4. Relation to the functor Φ. To define the mode transition algebra A, we used

the map ΦLΦR = ΦLΦR, which we can interpret as a functor from the category of A-

bimodules to the category of U -bimodules. Its properties in a more general framework

are described in Proposition B.2.5.

We now show that this functor agrees with the functor denoted Φ in [DGK22, Defi-

nition 2.2] which assigns to an A-bimodule M the (U L)⊗2-module

Φ(M) := (U L ⊗U L) “⊗f

U L
≤0⊗U L

≤0

M,

where U L
≤0 ⊗U L

≤0 acts on M as follows:

(u⊗ v)(m) =

u ·m · θ(v) if u, v ∈ U0

0 otherwise.

Here θ is the natural involution of U0, from e.g. [DGK22, Eq.(7)]), and which we

describe briefly in Section 3.4.1. In Lemma 3.4.5 we describe the relation between

functors ΦL and ΦR to Φ.

3.4.1. The involutions, left and right actions. As we explain here, there is an anti-Lie

algebra isomorphism θ used to transport the universal enveloping algebra, considered

as an object that acts on modules on the left (denoted here by U L), to an analogous

completion U R that acts on modules on the right.

The map θ : V ⊗C C((t))→ V ⊗C C((t−1)) is defined, for a ∈ V homogeneous, by

(4) a⊗
∑
i≥N

cit
i 7→ (−1)deg(a)

deg(a)∑
j≥0

Ñ
1

j!

Ä
Lj
1(a)

ä
⊗

∑
i≥N

cit
2 deg(a)−i−j−2

é
,

and extended linearly.

The map θ is related to the involution γ = (−1)L0eL1 : V → V defined, for a ∈ V
homogeneous by

(5) a 7→ (−1)deg a
∑
i≥0

1

i!
Li
1(a),

and extended by linearity. To state the relation succinctly, for every homogeneous a ∈ V
we set

(6) Jn(a) := a[deg(a)−1+n].

This notation, used in [NT05], has the property that deg(Jn(v)) = −n, so that the

degree of such an element is easily read.

Lemma 3.4.2. For a ∈ V , homogeneous, θ(Jn(a)) = J−n(γ(a)).

Proof. This follows by combining (4) and (5) and using linearity. □
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Lemma 3.4.3. The map θ induces a Lie algebra anti-isomorphism L(V )L → L(V )R,

which restricts to a Lie algebra involution on L(V )f , such that θ(L(V )L≤d) = L(V )R≥−d

and θ(L(V )fd) = L(V )f−d.

Proof. One can check that this restricts to an endomorphism of V ⊗C[t, t−1], which by

[NT05, Proposition 4.1.1], defines a Lie algebra involution of L(V )f , that is, θ([ℓ1, ℓ2]) =

−[θ(ℓ1), θ(ℓ2)], and θ2 = id. Moreover, it is easy to verify that θ(L(V )fd) ⊂ L(V )f−d. As

the Lie algebras L(V )L,L(V )R carry exhaustive and separated split filtrations by the

graded subalgebra L(V )f , they are naturally equipped with norms via Remark A.4.3

– that is, by declaring that elements of large positive degree are large in L(V )L and

small in L(V )R. With this definition, it follows that θ is continuous, and as noted in

Remark A.4.6, that the multiplication on the Lie algebras is continuous. Finally, the fact

that L(V )f induces a splitting of the filtrations, it follows that L(V )f is simultaneously

dense in L(V )L and L(V )R. Consequently, we see by continuity that θ induces an anti-

homomorphism from L(V )L to L(V )R, which is an anti-isomorphism as θ2 = id. □

If R = (R,+, ·) is a ring, denote by Rop its opposite ring, that is Rop = (R,+, ∗)
where a ∗ b := b · a. Similarly, if (L, [ , ]) is a Lie algebra, we denote by Lop its opposite

Lie algebra, where [a, b]Lop := [b, a]L.

Lemma 3.4.4. For U (L(V )R) the universal enveloping algebra of L(V )R,

θ : U (L(V )L)→ U (L(V )R)op

is an isomorphism of rings.

Proof. We have established in Lemma 3.4.3 that θ : L(V )L → L(V )R is an anti-isomorphism

of Lie algebras, so that θ : L(V )L → (L(V )R)op is a Lie-algebra isomorphism. Moreover,

as U ((L(V )R)op) = U (L(V )R)op, it follows that θ induces an isomorphism between

U (L(V )L) and U (L(V )R)op, as wanted. Here we note that θ(α·β) = θ(β)·θ(α) for every
α, β ∈ L(V )L (and where · is the usual product in the U (L(V )L) and U (L(V )R)). □

In particular θ is an isomorphism between U (L(V )f) and U (L(V )f)op.

Lemma 3.4.5. Let B be an associative ring, W 1 an (A, B)-bimodule and W 2 a (B,A)-

bimodule. Then we have a natural identification

ΦL(W 1)⊗B ΦR(W 2) ∼= Φ(W 1 ⊗B W
2)

of (U L,U R)-bimodules. In particular we have A = Φ(A).

Proof. We first note that there is a natural equivalence of categories between left

(U L)⊗2-modules and (U L, (U L)op)-modules. Moreover, as described in Lemma 3.4.4,

the involution θ provides an identification U R ∼= (U L)op. It follows that the map

ΦL(W 1)⊗B ΦR(W 2)→ Φ(W 1 ⊗B W
2) induced by

(u⊗ w1)⊗ (w2 ⊗ v) 7→ (u⊗ θ(v))⊗ (w1 ⊗ w2)

for all u ∈ U L, v ∈ U R and wi ∈Wi is indeed an isomorphism. □
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4. Smoothing, limits, and coinvariants

In Section 4.1 we describe the sheaf of coinvariants on schemes S parametrizing

families of pointed and coordinatized curves in general terms, while in Section 4.2,

we explain what we mean by sheaves defined over a scheme S = SpecR, where R is

a ring complete with respect to some ideal I. In Section 4.3, we describe the setup

for considering coinvariants on smoothings of nodal curves, establishing some results

needed for our geometric applications. In particular, in Section 4.4, for the proof of

Proposition 5.1.2, we explicitly describe the sheaf LC \P •(V ) of Chiral Lie algebras.

Throughout this section, V is a VOA with no additional finiteness assumptions.

4.1. Coinvariants. Let S be a scheme and let W be a quasi-coherent sheaf of OS-

modules. Let L be a quasi-coherent sheaf of Lie algebras on S acting on W . We define

the sheaf of coinvariants [W ]L on S as the cokernel

L ⊗OS
W → W → [W ]L → 0.

For future use, it will be helpful to note that the formation of the sheaves of coin-

variants commutes with base change.

Lemma 4.1.1. Let L be a quasi-coherent sheaf of Lie algebras on a scheme S acting

on a quasi-coherent sheaf W . For any morphism S′ → S, we have ([W ]L )S′ ∼= [WS′ ]LS′ .

Proof. This follows from right exactness of pullback of quasi-coherent sheaves (equiva-

lently right exactness of tensor). □

Remark 4.1.2. Let π : C → S be a projective curve, with n distinct smooth sections

P• : S → C and formal coordinates t• at P•. Assume further that C \ ⊔P•(S) → S is

affine. This assumption is possible by Propagation of Vacua [Cod19, Thm 3.6] (see also

[DGT22a, Theorem 4.3.1]). Denote by W • = W 1 ⊗ · · · ⊗Wn the tensor product of an

n-tuple of V -modules and let W := W • ⊗ OS . The sheaf of Chiral Lie algebras L :=

LC \P•(V ), originally defined in this context for families of stable curves with singularities

in [DGT21, DGT22a], is explicitly described with more details here in Section 4.4. The

sheaf of coinvariants [W ]L defined above will also be denoted [W •](C ,P•,t•). While quasi-

coherent [DGT21], for V C2-cofinite, or if generated in degree 1, this sheaf is coherent

[DGK22, GG12].

4.2. Completions. As in Section 4.1, we consider coinvariants over S = Spec(R),

where R is a ring that is complete with respect to some ideal I. For k ∈ Z≥0, setting

Sk = Spec(Rk) = Spec(R/Ik+1), pullbacks Lk and Wk of L and W to Sk respectively,

we work with coinvariants [Wk]Lk
for any k ∈ Z≥0. Due to quasicoherence, each of these

can be thought of as a module over Rk, with maps [Wk+1]Lk+1
→ [Wk]Lk

.

Definition 4.2.1. In the above situation, we define the formal coinvariants, denoted’[W ]L to be the I-adically complete R-module’[W ]L = lim←−[Wk]Lk
.
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Proposition 4.2.2. We have an identification’[W ]L = coker
î
lim←−π∗Lk ⊗OSk

Wk −→ lim←−Wk

ó
Proposition 4.2.3. Suppose [W ]L is finitely generated over an I-adically complete

Noetherian ring R. Then the natural map [W ]L → ’[W ]L is an isomorphism.

Proof. Consider the exact sequence of R-modules (omitting the π∗ from the notation,

and identifying the quasicoherent sheaves with the corresponding R-modules):

L ⊗R W −→ W −→ [W ]L −→ 0.

Tensoring with R/Ik (or geometrically base-changing along Sk → S) is a right exact

operation, hence it yields a right exact sequence

Lk ⊗Rn Wk −→ Wk −→ ([W ]L )Rk
−→ 0,

which shows that we can identify [Wk]Lk
= ([W ]L )Rk

. In particular, the composition

[W ]L −→ ’[W ]L −→ [Wk]Lk

coincides with the surjection [W ]L → [W ]L ⊗R R/I
k. Since [W ]L is finitely generated

over a complete Noetherian ring, it is I-adically complete by [Sta23, Tag 00MA(3)].

Therefore we can identify [W ]L = lim←−[W ]L ⊗R R/I
k = lim←−[Wk]Lk

= ’[W ]L , giving the

desired isomorphism. □

4.3. Smoothing setup. In order to introduce the smoothing property for V , we will

recall the notion of a smoothing of a nodal curve, and set a small amount of notation

used throughout. Let R = C[[q]] and write S = Spec(R). Let C0 be a projective curve

over C with at least one node Q, smooth and distinct points P• = (P1, . . . , Pn) such

that C0 \P• is affine, and formal coordinates t• = (t1, . . . , tn) at P•. Let η : ‹C0 → C0 be

the partial normalization of C0 at Q, which is naturally pointed by Q± := η−1(Q). We

also suppose we have chosen formal coordinates at Q± and we call them s±.

The choice of our formal coordinates s± determine a smoothing family (C , P•, t•)

over S, with the central fiber given by (C0, P•, t•). Let ( ‹C , P• ⊔ Q±, t• ⊔ s±) denote

the trivial extension ‹C0 × S with its corresponding markings. We will now discuss the

relationship between coinvariants for (C , P•, t•) and ( ‹C , P• ⊔Q±, t• ⊔ s±).
Let W 1, . . . ,Wn be an n-tuple of V -modules, or equivalently, smooth U -modules for

U the universal enveloping algebra of V (defined in Section 2), and W • their tensor

product. As is described above in Remark 4.1.2, we may also consider the sheaf of

coinvariants [W •](C ,P•,t•).

As mentioned in the introduction, there is a map α0 : W
• →W •⊗Φ(A) which induces

a map between coinvariants

[α0] : [W
•](C0,P•,t•)

∼=−→[W • ⊗ Φ(A)]Ä ‹C0,P•⊔Q±,t•⊔s±
ä.

Moreover, if V is C1-cofinite, then we will show in Lemma 4.4.4 that [α0] is an isomor-

phism. We recall that Φ(A) = A, so we will generally use the notation A below.

The following result, which is a consequence of Proposition 4.2.3, allows us to describe

coinvariants over ‹C whenever they are finite dimensional. The assumptions of the

https://stacks.math.columbia.edu/tag/00MA
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following result are satisfied when V is C2-cofinite, for all V -modules W •, and also

more generally (by [DGK22]).

Corollary 4.3.1. Assume that the sheaf [(W • ⊗ A)[[q]]]
( ‹C ,P•⊔Q±,t•⊔s±)

is coherent over

S. Then one has identifications

[(W • ⊗ A)[[q]]]Ä ‹C ,P•⊔Q±,t•⊔s±
ä
∼= [W • ⊗ A]Ä ‹C0,P•⊔Q±,t•⊔s±

ä[[q]]
∼= [W • ⊗ A]Ä ‹C0,P•⊔Q±,t•⊔s±

ä ⊗C C[[q]].

Proof. The second isomorphism holds because the coherence assumption implies that

[W •⊗A]
( ‹C0,P•⊔Q±,t•⊔s±)

is a finite dimensional vector space. To prove the first isomor-

phism, we consider, for R = C[[q]], the R-module and R-Lie algebra

W = (W • ⊗ A)[[q]], and L = L ‹C \{P•⊔Q±}(V ).

Since [W ]L is a finite dimensional R-module, for Rk = C[[q]]/qk+1, and Sk = Spec(Rk),

and one can show by Proposition 4.2.3, that

(7) [W ]L = lim←−
Ä
[W ⊗R Rk]L⊗RRk

ä
.

Note further that W ⊗R Rk = (W • ⊗ A)⊗C Rk, and similarly,

L ⊗R Rk = L
C̃0\{P•⊔Q±}(V )⊗C Rk.

Using this, together with Proposition 4.2.2, we deduce that (7) is isomorphic to

lim←−
Ä
[W • ⊗ A]

(C̃0,P•⊔Q±,t•⊔s±)
⊗C Rk

ä
which is indeed [W • ⊗ A]

( ‹C0,P•⊔Q±,t•⊔s±)
[[q]], as was asserted. □

Remark 4.3.2. Corollary 4.3.1 implies that, up to some assumptions of coherence,

the sheaf of coinvariants associated with W • ⊗A over ‹C0 deforms trivially to the sheaf

of coinvariants over the trivial deformation ‹C of ‹C0. Consequently, the target of the

induced map [α], which extends the map [α0] is therefore identified with the sheaf of

coinvariants associated with ‹C (and not only with a completion thereof).

We conclude this section with some criteria to show coherence of sheaves coinvariants

over S. Throughout we will use the notation Rk = C[[q]]/qk+1 and Sk = Spec(Rk) for

every k ∈ N.

Lemma 4.3.3. For M any module over Rk, let m1, . . . ,mr ∈ M be elements whose

images generate M ⊗Rk
R0. Then the elements m1, . . . ,mr also generate M .

Proof. We induct on k, the case k = 0 being automatic. For the induction step, suppose

m ∈M and consider the Rk−1 module M =M ⊗Rk
Rk−1. By the induction hypothesis,

the elements m1, . . . ,mr generate M . Therefore we can find a1, . . . ar ∈ Rk so that

m′ = m−
∑

aimi ∈M,

maps to 0 in M .
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Now consider the submodule M ′ = qkM ⊂ M . As qkM is exactly the kernel of

the map M → M = M ⊗Rk
Rk−1 we find that m′ ∈ M ′, and therefore we can write

m′ = qkx for some x ∈ M . Writing x =
∑
bimi (mod q), we find x−

∑
bimi = qy for

some y ∈M . But now we have

m =
Ä∑

aimi

ä
+m′ =

Ä∑
aimi

ä
+ qk

ÄÄ∑
bimi

ä
+ qy

ä
=

∑
(ai + qkbi)mi,

as desired. □

Proposition 4.3.4. If [W •](C0,P•,t•) is a finite dimensional vector space, then both

[W •[[q]]](C ,P•,t•) and [(W • ⊗ A)[[q]]]Ä ‹C ,P•⊔Q±,t•⊔s±
ä

are coherent.

Proof. For every k ∈ N and for every scheme X over S, denote the pullback of S to Sk

by Xk. Define

Mk := [W •
Rk

](Ck,P•,t•) and M̃k := [(W • ⊗ A)Rk
]Ä ‹Ck,P•⊔Q±,t•⊔s±

ä.
Let us first show that Mk and M̃k are coherent. As we are considering modules over

the Noetherian ring Rk, we only need to show that they are finitely generated. But

by Lemma 4.3.3, for this it suffices to show that M̃0 and M0 are finitely generated.

This holds because by assumption M0 is finitely generated and α0 : M0 → M̃0 is an

isomorphism by [DGT22a].

For simplicity, denote

M = [W •[[q]]](C ,P•,t•) and M̃ = [(W • ⊗ A)[[q]]]Ä ‹C ,P•⊔Q±,t•⊔s±
ä.

By Lemma 4.1.1, it follows that Mk = M ⊗R Rk and M̃k = M̃ ⊗R Rk. Consequently

the natural maps M̃k → M̃k−1 andMk →Mk−1 are surjective. It follows therefore from

[Sta23, Lemma 087W] that M and M̃ will be finitely generated over R whenever Mk

and M̃k are finitely generated over Rk for every k. This is what we have just shown

and so M and M̃ are coherent. □

4.4. The sheaf of Chiral Lie algebras. The sheaf of Chiral Lie algebras LC \P •(V )

can be identified with a quotient of the space of sections of the sheaf VC ⊗OC
ωC /S on

the affine open set C \ P• ⊂ C . Here, for later use in the proof of Proposition 5.1.2, in

order to describe the action of LC \P •(V ), we explicitly describe the sheaf VC ⊗OC
ωC /S ,

where VC is the contracted product (V ⊗C OC)×AutO AutC (see Remark 4.4.2).

For this, suppose we are given a relative curve C , projective over S = SpecC[[q]],
with closed fiber C0 (cut out by the ideal generated by q), and an (n + 1)-tuple of

distinct closed points P0, . . . , Pn ∈ C0 with affine complement C0 \ P• = C0 \
⋃

i Pi.

Let B = OC (C0 \ P•) denote those rational functions on C which are regular at every

scheme-theoretic point of C0 \ P• and let “B denote its q-adic completion. By [Pri00,

Theorem 3.4], coherent sheaves on C may be described by specifying coherent sheaves

MU on U = Spec “B, coherent sheaves Mi on Di := Spec “OC ,Pi
for each i, together with

“gluing data on the overlaps.”
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The overlaps in this case are described as the formal completions D×
i of the fiber

products Spec “B ×C Spec “OC ,Pi
, and the gluing data is a choice of an isomorphism

(Mi)D×
i

∼= (MU )D×
i
. More concretely, the D×

i can be described as follows. In a given

complete local ring “OC ,Pi
, the ideal generated by q which describes the closed fiber will

factor into a product of of primes ℘i,j . For each of these we can consider the localization

and completion at the prime. We find that D×
i is the disjoint union of the formal spectra

of the rings
Ä
(“OC ,Pi

)℘i,j

ä“℘i,j
. In particular, a coherent sheaf over D×

i is the data of a

finitely generated module over the Noetherian ring
Ä
(“OC ,Pi

)℘i,j

ä“℘i,j
.

In our case, we consider a semistable family of curves C /S, such that C is a regular

scheme and the closed fiber is reduced. We focus our attention on an isolated node Q,

and choose points P• with Q = P0 and with C0 \P• smooth. We then find that in “OC ,Q,

the complete (regular) local ring at Q, we may factor q = s+s−. Consequently, we may

write “OC ,Q
∼= C[[s+, s−]]. That is, we have“OC ,Q

∼= C[[s+, s−, q]]/(s+s− − q) ∼= C[[s+, s−]].

In this case, if we let ℘+ be the prime generated by s− and ℘− be the prime generated

by s+ (in “OC ,Q), then we findÄ
(“OC ,Pi

)℘±

ä“℘±
= C((s±))[[q]].

As VC (and similarly VC ⊗OC
ωC /S) is a limit of coherent sheaves (VC )≤k, we may use

the above procedure to describe it.

We choose U so that the torsor AutC /S is trivial over Spec “B via the choice of a

function s ∈ “B such that ds is a free generator of ωC /S(Spec “B) as an “B-module. In

other words, s is a coordinate on U . In particular, sections of VC ⊗OC
ωC /S on Spec “B

can be described as the “B module:

(8)
(
VC ⊗OC

ωC /S

)
(Spec “B) =

⊕
k∈N

Vk ⊗C “B (d/ds)k−1.

Remark 4.4.1. It is important to note that these expressions are not intrinsic to

VC ⊗OC
ωC /S as a sheaf on C , but rather depend on a choice of parameter s. Different

choices give different identifications which correspond to inhomogeneous isomorphisms

between the direct sums, but which do preserve the filtrations (VC ⊗OC
ωC /S)≤k.

Similarly, on DQ = Spec(“OC ,Q), either s+ or s− can be used to define a trivialization

of the torsor AutC , this time corresponding to the two possible choices of generators

ds+/s+ or ds−/s− of ωC /S . These choices allow us to give the following expressions for

the sections of our sheaf on DQ as a “OC ,Q-module:

(9)
(
VC ⊗OC

ωC /S

)
(DQ) =

⊕
k∈N

Vk ⊗C C[[s+, s−]]sk−1
± (d/ds±)

k−1.

In particular, we may express a section σ on DQ with respect to either the trivialization

given by s+ or by s−. Since γ(s+) = s−, the trivializations of AutC associated to the

coordinates s+ and s− (regarded as sections of the torsor) are related by the order 2

element (−1)L0eL1 ∈ AutO, which acts on V via the involution γ described in Eq. (5).
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Hence, we can write sections of the contracted product (V ⊗COC )×AutOAutC over DQ

as

(v ⊗ f, s+) = (v ⊗ f, γs−) ∼ (γ(v)⊗ f, s−) ,

for f ∈ OC . Choosing v ∈ Vℓ, the element of (9) which in the s+ trivialization is

represented by ∑
i,j≥0

v ⊗ xi,jsi+s
j
−s

ℓ−1
+ (d/ds+)

ℓ−1,

is represented with respect to the s− trivialization as

∑
i,j≥0

ℓ∑
m=0

1

m!
Lm
1 v ⊗ xi,jsi+s

j
−s

ℓ−m−1
− (d/ds−)

ℓ−m−1.

More generally, one should consider a sum of such terms for various values of ℓ.

Finally we consider the sheaf VC ⊗OC
ωC /S on D×

± = Spec(C((s±))[[q]]). In D×
±, as in

DQ, we may use the functions s± to trivialize our torsor. Consequently we have:

(10)
(
VC ⊗OC

ωC /S

)
(D±) =

⊕
k∈N

Vk ⊗C C((s±))[[q]] sk−1
± (d/ds±)

k−1.

Without loss of generality the trivializing coordinate s on U maps to our previously

chosen trivializing coordinate s+ in D×
+. That is, the map i+ : D×

+ ↪→ U corresponds to

maps of rings

(11) “B → C((s+))[[q]], s 7→ s+.

Although it is unnecessary here, to map s to both s+ and s− simultaneously, one could

work étale locally.

For notational convenience, it is useful to consider the action of AutO as on L(V )f0,

the degree 0 part of the ancillary algebra and to recall the notation (6). For ρ ∈ AutO
and a homogeneous element a ∈ V , we have ρJ0(a) = J0(ρa). Further, when we use a

coordinate s to trivialize our torsor AutC , we will identify the expression a[deg(a)−1+k]

with the element Jk(a) ∈ L(V )f−k. Finally, we simplify notation further by omitting the

factors of the form d/ds from our presentations.

Given σU ∈
(
VC ⊗OC

ωC /S

)
(Spec “B) we write (σU )± for its restriction to D×

±. Using

the notation above, following the explicit expressions of (8) and (10), we find that if

σU =
k∑

ℓ=0

vℓ ⊗ fℓ,

then writing f+ for the expansion (restriction) of the regular function f to C((s+))[[q]],
we have (as the coordinates are compatible)

(σU )+ =

k∑
ℓ=0

vℓ ⊗ (fℓ)+ =
∑

vℓ ⊗ (gℓ)+s
ℓ−1
+ .

On the other hand, if σQ ∈
(
VC ⊗OC

ωC /S

)
(DQ), is written as

∑k
ℓ=0

∑
i,j≥0 vℓ ⊗

xℓi,js
i+ℓ−1
+ sj−. If the section σQ, so represented, is to be compatible and glue together
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with the section σU above, we find that

(12)

k∑
ℓ=0

∑
i,j≥0

J0(vℓ)x
ℓ
i,js

i
+s

j
− =

∑
i,j,ℓ

J0(vℓ)x
ℓ
i,js

i−j
+ qj =

∑
i,j,ℓ

Ji−j(vℓ)x
ℓ
i,jq

j

must represent the expression for σU restricted to D×
+.

To express σU restricted toD×
−, following (4), we will make use of the anti-isomorphism

θ : L(V )L → L(V )R described in (4) and related to γ via Lemma 3.4.2. We then conclude

that σU restricted to D×
− is given by the expression

k∑
ℓ=0

∑
i,j≥0

γ(J0(vℓ))x
ℓ
i,js

i
+s

j
− =

∑
i,j,ℓ

J0(γ(vk))x
ℓ
i,js

j−i
− qi

=
∑
i,j,ℓ

Jj−i(γ(vk))x
ℓ
i,jq

i =
∑
i,j,ℓ

θ(Ji−j(vℓ))x
ℓ
i,jq

i.

Remark 4.4.2. Through the above description, we have that the sheaf VC discussed at

length in [DGT22a] agrees, even on the boundary ofMg,n, with the sheaf VC described

in [DGT21].

We conclude with two lemmas which will be useful in our applications in the next

section.

Lemma 4.4.3. Let C be a family of curves over S, possibly with nodal singularities.

Consider a collection of sections P1, . . . , Pn such that C \ P• = U ⊂ C is affine, and

let Q1, . . . Qk ⊂ C be a finite collection of distinct closed points in U (possibly including

nodes). Let DQi = Spec “OC ,Qi
be the complete local ring at Qi with maximal ideal

m̂C ,Qi
. Then for any ℓ ≥ 0 and any invertible sheaf of OC -modules L, the natural map

(VC ⊗OC
L) (U)→

⊕
i

(VC ⊗OC
L) (Spec “OC ,Qi

/
(
m̂C ,Qi

)ℓ
)

is surjective.

Proof. As VC ⊗OC
L =

⋃
k

(VC ⊗OC
L)≤k, it suffices to show that the map

(VC ⊗OC
L)≤k (U)→

⊕
i

(VC ⊗OC
L)≤k (Spec

“OC ,Qi
/
(
m̂C ,Qi

)ℓ
)

is surjective for all k. Since the sheaf (VC ⊗OC
L)≤k is free of finite rank over OC , then

this holds true. Indeed, for any coherent sheaf of modules M on C , the natural map

M(U)→
⊕

iM(SpecOC (U)/mC ,Qi
(U)ℓ) =

⊕
iM(U)⊗OC (U)OC (U)/mC ,Qi

(U)ℓ is seen

to be surjective, using the fact that OC (U) →
⊕

iOC (U)/mC ,Qi
(U)ℓ is surjective by

the Chinese Remainder Theorem, and that tensoring with M is right exact. □

Lemma 4.4.4. As in Section 4.3, let C0 be a projective curve over C with at least one

node Q, smooth and distinct points P• = (P1, . . . , Pn) such that C0 \ P• is affine, and

formal coordinates t• = (t1, . . . , tn) at P•. Let η : ‹C0 → C0 be the partial normalization

of C0 at Q, pointed by Q± := η−1(Q), and choose formal coordinates s± at Q±. Let
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W 1, . . . ,Wn be an n-tuple of V -modules. Then the map α0 : W
• → W • ⊗ A defined by

α0(w) = w ⊗ 1 induces a map between the vector spaces of coinvariants:

[α0] : [W
•](C0,P•,t•)

∼=−→[W • ⊗ A]Ä ‹C0,P•⊔Q±,t•⊔s±
ä,

which is an isomorphism in case V is C1-cofinite.

Proof. Suppose C0 has m nodes in total (including Q) and let C̃0
′
be the (full) normal-

ization of C0. Following [DGK22, Remark 3.4] we find we have maps

W •

α′
0

,,

α0

// W • ⊗ A
α′′
0

// W • ⊗ A⊗m

inducing corresponding maps [α0], [α
′
0], [α

′′
0] on the respective coinvariants such that [α′

0]

an isomorphism. It follows that [α0] is injective and therefore remains only to show that

it is also surjective.

For surjectivity, we follow the spirit of the proof of [DGT22a, Prop. 6.2.1]. We may

represent an element of A as given by an expression a1[n1]
· · · ak[nk]

⊗ 1 ⊗ b1[m1]
· · · br[mr]

.

For simplicity of notation, let us write a = a1[n1]
· · · ak[nk]

, a′ = a2[n2]
· · · ak[nk]

and b =

b1[m1]
· · · br[mr]

. We will show that all elements of the form [w ⊗ (a ⊗ 1 ⊗ b)] are in the

image of α0 by induction on k−m, the base case k−m = 0 being true by construction

(note b has nonpositive degree by definition). For the induction step, let us suppose that

k > 0 (the case m < 0 being similar), and let d′+ be the degree of a′ and d− the degree

of b. Without loss of generality, we may assume deg(a1[n1]
) ≥ · · · ≥ deg(ak[nk]

) ≥ 0. By

Lemma 4.4.3, setting L = ωC0(n1Q+ + NQ−) for N > d− − deg(a1), we may find a

section σ = a1 ⊗ f ,

σ ∈
Ä
V ‹C0
⊗OC0

ωC0(n1Q+ + (d− − 1)Q−)
ä
( ‹C0 \ P•) ⊂

Ä
V ‹C0
⊗OC0

ωC0

ä
( ‹C0 \ P• ⊔Q±)

such that the image σLQ+
of σ in

Ä
V ‹C0
⊗OC0

ωC0

ä
(“O ‹C0,Q+

) ∼= L(V )L has the form a1[n1]
+ã

where deg(ã) < −d′+. By construction, σLQ−
has degree < d− and consequently σRQ+

has

degree > −d−. So we find σLQ+
(a′ ⊗ 1 ⊗ b) = a ⊗ 1 ⊗ b and (a ⊗ 1 ⊗ b)σRQ−

= 0. This

tells us

σ ·
(
w ⊗ (a′ ⊗ 1⊗ b)

)
= (σw)⊗ (a′ ⊗ 1⊗ b) + w ⊗ (a⊗ 1⊗ b)

yielding [w ⊗ (a⊗ 1⊗ b)] = −[(σw)⊗ (a′ ⊗ 1⊗ b)], completing the induction step. □

5. Smoothing via strong unities

Here we prove Theorem 5.0.3, which relates the smoothing property of V , described

here in Definition 5.0.1, to the existence of strong unities in A. Theorem 5.0.3 relies

crucially on Proposition 5.1.2. These results are proved in Section 5.1. Geometric

consequences regarding coinvariants are given in Section 5.2.

Throughout this section we will use the notation introduced in Section 4.3, considering

two families of marked, parametrized curves (C , P•, t•) and ( ‹C , P• ⊔ Q±, t• ⊔ s±) over
the base scheme S = Spec(C[[q]]). As usual, A0 = A.
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Definition 5.0.1. Given a family (C , P•, t•), and collection of V -modulesW 1, . . . ,Wn,

an element I =
∑

d≥0 Idq
d ∈ A[[q]] defines a smoothing map for W • over (C , P•, t•), if

I0 = 1 ∈ A0, and the map W • → W • ⊗ A[[q]], w 7→ w ⊗ I extends by linearity and

q-adic continuity to an LC \P•(V )-module homomorphism α : W •[[q]] −→ (W • ⊗ A)[[q]].

We say that I =
∑

d≥0 Idq
d ∈ A[[q]] defines a smoothing map for V , if it defines a

smoothing map for all V -modules W •, over all families (C , P•, t•).

Definition 5.0.2. Smoothing holds for W • over the family (C , P•, t•), if there is an

element I =
∑

d≥0 Idq
d ∈ A[[q]] giving a smoothing map for W • over (C , P•, t•).

V satisfies smoothing if smoothing holds for all W •, over all families (C , P•, t•).

Theorem 5.0.3. Let V be a VOA. Then the algebras Ad admit strong unities for all

d ∈ N if and only if V satisfies smoothing.

5.1. Proof of Theorem 5.0.3. Following the idea of Definition/Lemma 3.3.1(2 ), we

make the following definition:

Definition 5.1.1. We say that a sequence (Id)d∈N, with Id ∈ A satisfies the strong

unity equations if for every homogeneous a ∈ V , and n ∈ Z such that n ≤ d, we have

(13) Jn(a)Id = Id−nJn(a).

In Definition 5.1.1 there is no assumption on the (bi-)degrees of the elements Id ∈ A.

However, if Id ∈ Ad is a unity for each d, then by Definition/Lemma 3.3.1 they satisfy

the strong unity equations if and only if they are strong unities.

Proposition 5.1.2. Let V be a VOA and let Id ∈ A for d ∈ N. Then I =
∑

Idq
d

defines a smoothing map forW • over (C , P•, t•) if and only if the sequence (Id) satisfies

the strong unity equations (13).

Proof. The map α : W •[[q]]→ (W •⊗A)[[q]] is a map of LC \P •(V )-modules if and only if,

for every σ ∈ LC \P •(V ) and u ∈ W •, one has α(σ(u)) = σ(α(u)). Here, the left hand

side equals (σ ·u)⊗I . To describe the right hand side, as is explained in the beginning

of Section 4.4, we recall that elements of the Lie algebra LC \P•(V ) are represented by

sections of the sheaf VC ⊗OC
ωC /S over the affine open set C \P•. Consequently we can

understand the right hand side in terms of the maps(
VC ⊗OC

ωC /S

)
(C \ P•)→

(
VC ⊗OC

ωC /S

)
(D×

±)
∼= V ⊗C C((t))[[q]]

σ 7→ σL±.

We let σR− = θ(σL−) ∈ C((t−1))[[q]]. We then have

σ(u⊗I ) = σ(u)⊗I + u⊗ (σL+ ⊗ 1 + 1⊗ σR−)(I ).

It follows that α is a map of LC \P •(V )-modules if and only if

(14) σ ·I =
Ä
σL+ ⊗ 1 + 1⊗ σR−

ä
·I = 0.

We now reframe this in the language developed towards the end of Section 4.4. For

a section σ ∈
(
VC ⊗OC

ωC /S

)
≤k

(C \ P•), writing s+s− = q on “OC ,Q, we may write (in
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terms of the local trivializations of Section 4.4)

σ|DQ
=

k∑
ℓ=0

∑
i,j≥0

J0(vℓ) x
ℓ
i,j s

i
+s

j
i

and for this section σ we have

σL+ =
k∑

ℓ=0

∑
i,j≥0

Ji−j(vℓ)x
ℓ
i,jq

j and σR− =
k∑

ℓ=0

∑
i,j≥0

Ji−j(vℓ)x
ℓ
i,jq

i.

Putting this together with (14), we find that smoothing holds if and only if for all σ

as above (and for all k), we have

k∑
ℓ=0

∑
i,j,d≥0

xij
Ä
Ji−j(vℓ) ·Id q

d+j −Id · Ji−j(vℓ) q
d+i
ä
= 0.

This in turn holds if and only if each coefficient of qm is zero, translating to the

statement

(15)
k∑

ℓ=0

∑
0≤i,j≤m

xij (Ji−j(vℓ) ·Im−j −Im−i · Ji−j(vℓ)) = 0,

for every m ≥ 0.

We note that the systems of equations

Jn(vℓ)Id = Id−nJn(vℓ), with n ≤ d, and d ∈ N, vℓ ∈ Vℓ, ℓ ∈ N,

and

Ji−j(vℓ) ·Im−j −Im−i · Ji−j(vℓ) = 0, with 0 ≤ i, j ≤ m, and m ∈ N, vℓ ∈ Vℓ, ℓ ∈ N,

are equivalent after a change of variables. We then have showed that, if (Id)d∈N satisfies

the strong unity equations, it follows that I defines a smoothing map. It remains to

show the converse, namely that if (15) holds for every σ, then the strong unity equations

hold.

We do this by the following strategy: we will show that for every 0 ≤ i0, j0 ≤ m,

m ∈ N and v′ℓ0 ∈ Vℓ0 , we may find a section σ ∈
(
VC ⊗OC

ωC /S

)
(C \ P•) so that the

expansion of σ at Q has the form

(16) σ|DQ
=

k∑
ℓ=0

∑
i,j≥0

J0(vℓ) x
ℓ
i,j s

i
+s

j
i = J0(v

′
ℓ0)s

i0
+s

j0
− +

k∑
ℓ=0

∑
i,j≥m

J0(vℓ) x
ℓ
i,j s

i
+s

j
i .

That is, we argue that the coefficients xi,j in of the terms in (16) of degree less than

m are only nonzero in the case i = i0, j = j0, and in this case xi0,j0 = 1. For such a

section σ, (15) simply becomes Ji0−j0(vℓ) ·Im−j0−Im−i0 ·Ji0−j0(vℓ) = 0, which, as has

been noted, is equivalent to the strong unity equations once we run this argument for

all i0, j0 and m. For this final step, we note that by Lemma 4.4.3 we have a surjective
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map(
VC ⊗OC

ωC /S

)
(C \ P•) //

(
VC ⊗OC

ωC /S

)
≤k

(Spec “OC ,Q/
(
m̂C ,Q

)2m
)

(
VC ⊗OC

ωC /S

)
≤k

(Spec “OC ,Q)⊗“OC ,Q

“OC ,Q/(m̂C ,Q)
2m

for every m ≥ 0. Hence there exists σ ∈
(
VC ⊗OC

ωC /S

)
(C \ P•) whose image in(

VC ⊗OC
ωC /S

)
(Spec “OC ,Q) is congruent modulo (m̂C ,Q)

2m = (s+, s−)
2m to J0(v

′
ℓ0
)si0+s

j0
− .

It follows (16) holds for this σ as desired and the proof is complete. □

We note that already Proposition 5.1.2 shows that the smoothing property never

depends on modules or specific families of curves:

Corollary 5.1.3. Smoothing holds for W • over a family (C , P•, t•) if and only if V

satisfies smoothing.

Proof. If smoothing holds for W • over a family (C , P•, t•), then by Proposition 5.1.2,

the sequence (Id)d∈Z satisfies the strong unity equations. But then, invoking again

Proposition 5.1.2, we deduce that this sequence defines a smoothing map for any choice

of modules and family of curves. □

In what follows, for an element b ∈ A = ⊕i,jAi,j , we write bi,j ∈ Ai,j for the corre-

sponding homogeneous component of b.

Lemma 5.1.4. For V a VOA, if the sequence (Id)d∈N with Id ∈ A satisfies the strong

unity equations (13), then so does the sequence (I ′
d)d∈N where I ′

d := (Id)d,−d.

Proof. Suppose we have a sequence (Id) satisfying the strong unity equations. When

we equate terms of like degree in the expression

Jn(a) ·Id = Id−n · Jn(a),

we obtain

Jn(a) · (Id)i+n,j = (Id)i,j−n · Jn(a)

for every i, j. In particular, for I ′
d = (Id)d,−d, we find that the strong unity equations

(13) hold for the sequence (I ′
d)d∈N, as was claimed. □

In what follows we will use the following equalities, which are a direct consequence

of Proposition B.2.5. Let a, b ∈ A. Then for every u,w ∈ U we have

(17) u · (a ⋆ b) = (u · a) ⋆ b and (a ⋆ b) · w = a ⋆ (b · w).

Lemma 5.1.5. Suppose we have a collection of elements Id ∈ Ad for each d ≥ 0, with

I0 = 1 ∈ A0. Then, Id is a strong unity in Ad ⊂ A, for all d ∈ N, if and only if the

sequence (Id)d∈N satisfies the strong unity equations (13).

Proof. Definition/Lemma 3.3.1(2 ) with a = Jn(v) implies that strong unities satisfy the

strong unity equations (13), so we are left to prove the converse statement. To show

that Id is a strong unity for each d, it suffices to show that Id acts as the identity
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element on Ad,e for every e ∈ Z. That is, for every a ∈ A0,e, and n1 ≤ · · · ≤ nr < 0 with∑
ni = −d, we need to show

Id ⋆ (Jn1(v1) · · · Jnr(vr) · a) = Jn1(v1) · · · Jnr(vr) · a.

We argue by induction on r. The base case r = 0 holds since by assumptions I0 = 1 ∈
A0 = A, hence I0 ⋆ a = 1 · a = a. For the inductive step, we write:

Id ⋆ (Jn1(v1) · Jn2(v2) · · · Jnr(vr) · a) = Id ⋆ ((Jn1(v1)) (Jn2(v2) · · · Jnr(vr) · a))

(17) = (Id · Jn1(v1)) ⋆ (Jn2(v2) · · · Jnr(vr) · a)

(13) = (Jn1(v1) ·Id+n1) ⋆ (Jn2(v2) · · · Jnr(vr) · a)

(17) = Jn1(v1) · (Id+n1 ⋆ (Jn2(v2) · · · Jnr(vr) · a))

(by induction) = Jn1(v1)Jn2(v2) · · · Jnr(vr) · a,

where the last identity holds by induction. □

We may now complete the proof of Theorem 5.0.3.

Proof of Theorem 5.0.3. Suppose the algebras Ad admit strong unities. Writing Id for

these unities, we can apply Lemma 5.1.5 to deduce that the sequence (Id)d∈N satisfies

the strong unity equations and therefore, by Proposition 5.1.2, the element I =
∑

Idq
d

defines a smoothing map for any family of marked curves and choice of modules W •.

Hence V satisfies smoothing.

Conversely, if V satisfies smoothing, there exists I =
∑

Idq
d which defines a

smoothing map for any family of marked curves and choice of modules W •, then by

Proposition 5.1.2, the sequence (Id)d∈N satisfies the strong unity equations. Using

Lemma 5.1.4 we may find a new sequence (I ′
d)d∈N with I ′

d ∈ Ad which also satisfy the

strong unity equations. It follows from Lemma 5.1.5 that the elements I ′
d are strong

unities. □

5.2. Geometric results. We describe in this section some statements about coinvari-

ants, most of which are implications of Theorem 5.0.3.

Corollary 5.2.1. For any VOA V , let W • be V -modules such that the sheaf [(W • ⊗
A)[[q]]]

( ‹C ,P•⊔Q±,t•⊔s±)
is coherent over S. Assume that Ad admits a strong unity Id for

every d ∈ N. Set I =
∑

d≥0 Idq
d, and let α : W •[[q]]→ (W •⊗A)[[q]] be the map induced

by w 7→ w ⊗I (see Definition 5.0.1). Then the diagram

[W •[[q]]](C ,P•,t•) [W • ⊗ A]
( ‹C0,P•⊔Q±,t•⊔s±)

[[q]]

[W •](C0,P•,t•)
[W • ⊗ A]

( ‹C0,P•⊔Q±,t•⊔s±)

[α]

[α0]

commutes, where α0 : W
• →W ⊗ A is given by w 7→ w ⊗I0.

Proof. The vertical maps are given by imposing the condition q = 0, and are surjective.

After the identification of A with Φ(A) provided in Lemma 3.4.5, we see that the map

[α0] is well defined as in [DGK22, Proposition 3.3].
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By the proof of Theorem 5.0.3 we deduce that the map α is a map of LC \P•(V )-

modules and since LC \P•(V ) ⊂ L ‹C \(P•⊔Q±)
(V ), this induces a map of coinvariants

[W •[[q]]](C ,P•,t•) −→ [(W • ⊗ A)[[q]]]
( ‹C ,P•⊔Q±,t•⊔s±)

whose reduction modulo q is indeed [α0]. Finally, we use Corollary 4.3.1 to identify

[(W • ⊗ A)[[q]]]
( ‹C ,P•⊔Q±,t•⊔s±)

∼= [W • ⊗ A]
( ‹C0,P•⊔Q±,t•⊔s±)

[[q]]

which concludes the proof. □

To state the following consequence, we recall that sheaves of coinvariants V(V ;W •)

are attached to coordinatized curves (C,P•, t•) such that C\P• is affine. By Propagation

of vacua [Cod19, DGT22a], we may drop the latter condition, so that V(V ;W •) can be

considered a sheaf on ËMg,n, the stack of stable coordinatized curves. Depending on V

and on W •, this further descends to a sheaf overMg,n. To formulate our next result it

is convenient to introduce the following notation.

Definition 5.2.2. Let V be a VOA. We say that V has coherent coinvariants if for

every family of stable and pointed coordinatized curves (C,P•, t•), and modules W •,

the sheaf of coinvariants [W •](C,P•,t•) is coherent.

Definition 5.2.3. Let V be a VOA. We say that V has finite gluing if for every stable

and pointed coordinatized curve (C , P•, t•) with a node Q, and modules W •, the space

of coinvariants [(W • ⊗ A)[[q]]]
( ‹C ,P•⊔Q±,t•⊔s±)

is coherent over Spec(C[[t]]).

Remark 5.2.4. We make two observations:

(i) We note that if V is C2-cofinite, then by [DGK22, Corollary 4.2], V has coherent

coinvariants and finite gluing. As we shall see, this is also true for VOAs like

the Heisenberg which are generated in degree 1, but are not C2-cofinite.

(ii) By Corollary 4.3.1, if V has finite gluing it follows that [(W •⊗A)[[q]]]
( ‹C ,P•⊔Q±,t•⊔s±)

is actually free over C[[q]].

We begin with an auxiliary result.

Lemma 5.2.5. Let V be a C1-cofinite VOA that satisfies smoothing and such that

[W •[[q]]](C ,P•,t•) and [(W • ⊗ A)[[q]]]
( ‹C ,P•⊔Q±,t•⊔s±)

are coherent over S. Then the map

[α] defined in Corollary 5.2.1 is an isomorphism.

Proof. Since V is C1-cofinite, Lemma 4.4.4 ensures that [α0] is an isomorphism. Since

the source and target of [α] is finitely generated and the target is locally free (see

Remark 5.2.4 (ii)), Nakayama’s lemma ensures that [α] is an isomorphism as well. □

To state the next results, we shall refer to the moduli stacks ËMg,n, parametrizing

families of stable pointed curves of genus g with coordinates, and J g,n, of stable pointed

curves of genus g with first order tangent data, and projection mapsËMg,n → J g,n →Mg,n,

discussed in detail in [DGT22a, §2]. Recall the notation from Remark 4.1.2.
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Corollary 5.2.6. Let W 1, . . . ,Wn be simple modules over a C1-cofinite vertex operator

algebra V , such that coinvariants are coherent for curves of genus g, and such that

Ad(V ) admit strong unities for all d ∈ Z≥0. Then sheaves of coinvariants are locally

free, giving rise to a vector bundle Vg(V ;W •)J g,n on J g,n. If the conformal dimensions

of W 1, . . . ,Wn are rational, these sheaves define vector bundles Vg(V ;W •) onMg,n.

Proof. Since a sheaf of OS-modules is locally free if and only if is coherent and flat,

in order to show a coherent sheaf [W •]L is locally free, it suffices to show that it is

flat. For this, we can use the valuative criteria of [Gro67, Thm 11.8.1, §3] to reduce

to the case that our base scheme is S = Spec(C[[q]]). By [Har77, Ex. II.5.8], since S

is Noetherian and reduced, and since formation of coinvariants commutes with base

change, by Lemma 4.1.1, it suffices to check that vector spaces of coinvariants have the

same dimension over all pointed and coordinatized curves.

Our strategy for checking this condition holds is to argue by induction on the number

of nodes, reducing to the base case where the curve has no nodes.

To take the inductive step, following the notation of Corollary 5.2.1, let C0 → Spec(k)

be a nodal curve with k+1 nodes, and let C → Spec(C[[q]]) be a smoothing family with

C0 the special fiber. By Proposition 4.3.4 and by Lemma 5.2.5, we deduce that [α] is

an isomorphism, so that the dimension of the space of coinvariants associated with C0

agrees with the dimension of the space of coinvariants for the partial normalization ‹C0,

a curve with k nodes. Therefore, by induction, the vector space [W •](C0,P•,t•) has the

same dimension as the vector space of coinvariants associated with a smooth curve.

We are then left to show that spaces of coinvariants associated with smooth curves of

the same genus have the same dimensions. This holds since coinvariants [W •]L are by

assumption coherent, and moreover, when restricted to families of smooth coordinatized

curves, they define a sheaf which admits a projectively flat connection [FBZ04, DGT21].

We have shown that [W •]L is flat, giving rise to a coherent and locally free sheaf

on ËMg,n. As shown in [DGT22a], this sheaf of coinvariants descends to a sheaf of

coinvariants Vg(V ;W •)J g,n on J g,n. Moreover, for any collection of simple V -modules

W • with rational conformal weights, as is explained in [DGT22a, §8.7.1], the sheaves

are independent of coordinates and will further descend to vector bundles on Mg,n,

denoted Vg(V ;W •). □

Remark 5.2.7. We note the following consequences of Corollary 5.2.6:

(a) For a collection of simple modules over a C2-cofinite VOA, the sheaf of coinvari-

ants will give vector bundles Vg(V ;W •) onMg,n whenever the algebras Ad(V )

admit strong unities. To see this, we note that the coinvariants will be coherent

by [DGK22], and by [Miy04, Corollary 5.10] any simple module over a C2-cofinite

V has rational conformal weight.

(b) Combining Example 3.3.2 with Corollary 5.2.6 one may show that sheaves of

coinvariants from C2-cofinite and rational VOAs define vector bundles onMg,n,

recovering [DGT22a, VB Corollary].

(c) By [GG12], sheaves defined by simple modules over VOAs that are generated

in degree 1 are coherent over rational curves. If V satisfies smoothing, such
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sheaves of coinvariants descend to vector bundles V0(V ;W •)J 0,n on J 0,n. If the

conformal dimensions of the modules are in Q, they further descend to vector

bundles V0(V ;W •) on M0,n. Moreover, by [GG12], these bundles are globally

generated. We refer to Section 7 and Corollary 7.4.1 for an application of this

using the Heisenberg VOA.

6. Relations between higher Zhu algebras and mode transition algebras

Recall that if any of the equivalent properties of Definition/Lemma 3.3.1 hold, we

say that Id ∈ Ad is a strong unity. Here we prove Theorem 6.0.1, one of our two main

results. In order to formulate it, we introduce the map

µd : Ad → Ad, µd(α⊗ u⊗ β) = [αuβ]d.

This map is well defined and fits into a sequence

(18) Ad
µd−→ Ad

πd−→ Ad−1 −→ 0,

which is right exact (see Lemma B.3.1).

Theorem 6.0.1. (a) If the mode transition algebra Ad admits a unity element, then

the short exact sequence (18) is split exact, and Ad
∼= Ad × Ad−1 as rings. In

particular, if Aj admits a unity for every j ≤ d, then Ad
∼= Ad⊕Ad−1⊕· · ·⊕A0.

(b) If Ad admits a strong unity for all d ∈ N, so that smoothing holds for V , then

given any generalized Verma module W = ΦL(W0) = ⊕d∈NWd where L0 acts on

W0 as a scalar with eigenvalue cW ∈ C, there is no proper submodule Z ⊂ W

with cZ − cW > 0 for every eigenvalue cZ of L0 on Z (see Remark 6.0.2).

We note that Theorem B.3.3 specializes to Part (a) of Theorem 6.0.1. It therefore

remains to prove Part (b) of Theorem 6.0.1.

Proof. We say that an induced admissible module W = ΦL(W0) has the LCW property

if L0 acts on W0 as a scalar with eigenvalue cW ∈ C, and there is no proper submodule

Z ⊂W with cZ − cW > 0 for every eigenvalue cZ of L0 on Z. Suppose for contradiction

that V admits a module W = ΦL(W0), and W does not have the LCW property. We

will show that there must be a d ∈ N such that Ad is not unital, contradicting our

assumptions.

By hypothesis, W has a proper submodule Z with cZ − cW > 0 for every eigenvalue

cZ of L0 on Z. In particular, Z is not induced in degree zero over A. Let zd be any

homogeneous element in Z of smallest degree d > 0, so that zd ∈ Wd. By assumption

Ad is unital, with unity ud =
∑

i αi ⊗ 1 ⊗ βi, where each αi has degree d and each βi

has degree −d. The action of A on W restricts to an action of Ad on Wd, and since ud

is the unity of Ad we have

Ad ×Wd −→Wd, (ud, zd) 7→ ud ⋆ zd = zd.

Unraveling the definition of ⋆ and its associativity properties we have ud ⋆ zd =
∑

i αi ·
(βi · zd). But now since the degree of βi · zd is zero and Z is a submodule, we have that
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βi · zd ∈ Z ∩W0 = 0, since Z does not have a degree zero component. It then follows

that zd = ud ⋆ zd = 0, giving a contradiction since we assumed zd ̸= 0. □

Remark 6.0.2. Although the eigenvalues cZ and cW are in general complex numbers,

the difference cZ − cW is always an integer, hence it makes sense to require that this

number be positive. In fact, every eigenvalue of the action of L0 on W will be obtained

by shifting cW by a non-negative integer. The condition cZ − cW > 0 coincides then

with cZ ̸= cW . We remark that when V is C2-cofinite, then the eigenvalues of L0 are

necessarily rational numbers [Miy04].

7. Mode transition algebra for the Heisenberg vertex algebra

In this section we describe the mode transition algebras for the Heisenberg vertex

algebra. This result is stated in Proposition 7.2.1 and, as a consequence, in Section 7.3

we obtain that [AB22, Conjecture 8.1] holds. We refer [FBZ04, LL04, Mil08, BVWY19a,

AB22] for more details about the vertex algebra, denoted π, Vĥ(1, α), Ma(1) and M(1)a

in the literature, and which we next briefly describe.

7.1. Background on the Heisenberg VOA. Let h = HC((t))⊕ kC be the extended

Heisenberg algebra and consider the Heisenberg vertex algebra V = π. Let U1(h) denote

the quotient of the universal enveloping algebra U (h) by the two sided ideal generated

by k − 1. Following [FBZ04, Section 4.3] the Lie algebra L(V )L is naturally embedded

inside

U (h)
L
:= lim←−

U1(h)

U1(h) ◦HtNC[t]
.

The map is induced by (b−1)[n] 7→ Htn. This embedding induces a natural isomorphism

between U L and U (h)
L
which translates the filtration on U L into the canonical filtration

on U (h)
L
induced by the filtration on C((t)) given by F pC((t)) = t−pC[t−1].

A similar construction holds for L(V )R and U R, where the extended Heisenberg

algebra h = HC((t))⊕ C is replaced by h = HC((t−1))⊕ C.
The sub ring U of U L and U R has a natural gradation induced by deg(Htn) = −n.

We can then deduce that the associated zero mode algebra A0 is isomorphic to the

commutative ring C[x], where the element (b−1)[0] = H ∈ U0 is identified with the

variable x. Combining these results we can explicitly compute all the mode transition

algebras.

7.2. Mode transition algebras for the Heisenberg VOA. We can now state and

prove the main result of this section.

Proposition 7.2.1. There is a natural identification Ad(π) ∼= Matp(d)(C[x]), where

p(d) is the number of ways to decompose d into a sum of positive integers. In particular

Ad is unital for every d ∈ N.

Proof. Denote by P (d) the set of partitions of d into positive integers, so that |P (d)| =
p(d). We represent every element [r1| · · · |rn] = r ∈ P (d) by a decreasing sequence of
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positive integers r1 ≥ · · · ≥ rn ≥ 1 such that
∑

i ri = d and for some n ∈ N. For every

pair (r, s) ∈ P (d)2, we denote by εr,s the element in Ad given by

Ht−r1 ◦ · · · ◦Ht−rn ⊗ 1⊗Htsm ◦ · · · ◦Hts1 .

From the explicit description of U given above, and the fact that the Zhu algebra

A = C[x] at level zero is Abelian, we have that the set whose elements are εr,s freely

generates Ad as an A-module. Moreover, using a computation similar to Example 3.2.3,

one may show that

Htsm ◦ · · · ◦Hts1 ⃝⋆ Ht−r1 ◦ · · · ◦Ht−rm =

a(r) if s = r

0 otherwise,

where a(r) is a non-zero, positive integer entirely depending on r. It then follows that

εr′,s ⋆ εr,s′ =

a(r)εr′,s′ if s = r

0 otherwise.

By identifying εr,s with the element of Matp(d)(C) having
√
a(r)

√
a(s) in the (r, s)-

entry, and zero otherwise, the above description gives an isomorphism of rings between

Ad and C[x]⊗Matp(d)(C) = Matp(d)(C[x]), as is claimed. □

Example 7.2.2. We can explicitly compute the coefficient a(r) appearing in the proof

of Proposition 7.2.1. Let r = [r1| . . . |rd] be a partition of d with consisting of s many

distinct elements ri1 , . . . , ris (at most s = d). For every j ∈ {1, . . . , s}, let mj be the

multiplicity of rij in r. Then we have

a(r) =
r∏

i=1

ri ·
s∏

j=1

(mj !).

For instance a([1| · · · |1]) = d! and a([d]) = d. Moreover a([r1| · · · |rd]) = r1 · · · · · rd if the

ri’s are all distinct.

7.3. The conjecture of Barron and Addabbo. We now prove [AB22, Conj. 8.1].

Corollary 7.3.1. For all d ∈ N, one has that Ad(π) ∼= Matp(d)(C[x])⊕ Ad−1(π).

Proof. This follows from Proposition 7.2.1 and Part (a) of Theorem 6.0.1. □

Remark 7.3.2. By [BVWY19a, Remark 4.2], A0(π) ∼= C[x], A1(π) ∼= C[x]⊕A0(π), and

by [AB22, Theorem 7.1], A2(π) ∼= Matp(2)(C[x])⊕ A1(π).

7.4. Vector bundles from the Heisenberg VOAs. We now equip π with a confor-

mal vector ω, so that it becomes a VOA. The following result shows that the application

of Theorem 6.0.1 produces new examples, beyond the well-studied case of sheaves of

coinvariants defined by rational and C2-cofinite VOAs.

Let J 0,n be the stack parametrizing families of stable pointed curves of genus zero

with first order tangent data, and recall that the forgetful map π : J 0,n →M0,n makes

J 0,n a G⊕n
m -torsor overM0,n.
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Corollary 7.4.1. Sheaves of coinvariants defined by simple modules over the Heisen-

berg VOA form globally generated vector bundles on J 0,n. If conformal dimensions of

modules are in Q, these descend to form globally generated vector bundles onM0,n.

Proof. By Proposition 7.2.1, the mode transition algebras for the Heisenberg VOAs are

unital. Moreover, the formula of the star product implies that these are strong unities.

Hence by Theorem 6.0.1, the Heisenberg VOA satisfies smoothing. Since the Heisenberg

VOA is by definition generated in degree 1, the assertion follows from Corollary 5.2.6,

as described in Remark 5.2.7 (c),. □

Remark 7.4.2. Unlike bundles of coinvariants given by representations of rational and

C2-cofinite VOAs, higher Chern classes of bundles on Mg,n from Corollary 5.2.6 (like

those on M0,n from Corollary 7.4.1) are elements of the tautological ring since we do

not know if they satisfy factorization, and hence we do not that the Chern characters

form a semisimple cohomological field theory as in [MOP+17, DGT22b].

8. Mode transition algebras for non-discrete series Virasoro VOAs

For c ∈ C, by Virc = Mc,0/< L−11 > we mean the (not necessarily simple) Virasoro

VOA of central charge c ∈ C. By [Wan93], when c ̸= cp,q = 1 − 6(p−q)2

pq , then Virc is a

simple VOA, but it is not rational or C2-cofinite.

8.1. Virc. When c ̸= cp,q = 1− 6(p−q)2

pq , then Virc is a simple VOA, but it is not rational

or C2-cofinite. When c = cp,q, the VOA Virc is not simple, but its simple quotient

Lc will be rational and C2-cofinite, and therefore satisfy smoothing. We therefore only

consider Virc, for any values of c, and not Lc.

Proposition 8.1.1. Let Virc be the Virasoro VOA.

(a) The first mode transition algebra A1(Virc) is not unital, and so Virc does not

satisfy smoothing.

(b) The kernel of the canonical projection A1(Virc) → A0(Virc) is isomorphic to

A1(Virc).

Proof. We first prove (a). By [Wan93, Lemma 4.1], one has A0(Virc) ∼= C[t], where the

class of (L−21)[1] is mapped to the generator t.

Here, as in Heisenberg case, L(V )f±1 is a one dimensional vector space, with generators

denoted u±1, so that A1(Virc) = u1A(Virc)u−1 . We can choose u1 = (L−21)[0] and

u−1 = (L−21)[2], and to understand the multiplicative structure of A1(Virc) we are only

left to compute [u−1, u1]. Since L−21 is the conformal vector of Virc, we can identify

(L−21)[n] with the element Ln−1 of the Virasoro algebra, and the bracket of L(Virc)

coincides with the bracket in the Virasoro algebra. Hence we obtain

[u−1, u1] = [(L−21)[2], (L−21)[0]] = [L1,L−1] = 2L0 = 2(L−21)[1].

We then have an identification of A1(Virc) with (C[t],+, ⋆), where + denotes the usual

sum of polynomials, while f(t) ⋆ g(t) = 2tf(t)g(t). In particular, this implies that

A1(Virc) is not unital.
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We now show (b). By [Wan93], A0(Virc) is generated by L−21+O0(V ) and L2
−21+

O0(V ) so that

A0(Virc) ∼= C[x, y]/(y − x2 − 2x) ∼= C[x],

L−21+O0(V ) 7→ x+ (q0(x, y)), L2
−21+O0(V ) 7→ y + (q0(x, y)),

where q0(x, y) = y − x2 − 2x. By [BVWY20, Theorem 4.7], A1(Virc) is generated by

L−21+O1(V ) and L2
−21+O1(V ), and by [BVWY20, Theorem 4.11] on has that

A1(Virc) ∼= C[x, y]/((y − x2 − 2x)(y − x2 − 6x+ 4)),

L−21+O1(V ) 7→ x+ (q0(x, y)q1(x, y)), L2
−21+O1(V ) 7→ y + (q0(x, y)q1(x, y)),

where q0(x, y) = y − x2 − 2x and q1(x, y) = y − x2 − 6x + 4 (see also [BVWY20, §5]).
With the change of variables X = y − x2 − 6x+ 4 and Y = y − x2 − 2x, one has

A1(Virc) =
C[X,Y ]

XY
and A0(Virc) = C[X],

so that the kernel of the projection A1(Virc) → A0(Virc) is identified with the ideal

K1 generated by Y inside A1(Virc). Since XY = 0, the ideal K1 is isomorphic to

(Y C[Y ],+, ·). Furthermore, this algebra is isomorphic to the algebra (C[t],+, ⋆) through
the assignment Y f(Y ) 7→ f(2t). This shows that, abstractly, A1(Virc) is identified with

the kernel of A1(Virc)→ A0(Virc).

We now see directly that this identification is provided by the natural map µ1 : A1 →
A1(V ), which is induced by (L−21)[0] ⊗ 1 ⊗ (L−21)[2] 7→ [(L−21)[0](L−21)[2]] as in

Lemma B.3.1. To check that indeed A1(Virc) naturally identifies with the kernel of

A1(Virc)→ A0(Virc), it is enough to show that

Ỹ − 2(L−21)[0](L−21)[2] ∈ N2U0,

where Ỹ is any lift of Y to U0. We choose

Ỹ = (L−2L−21)[3] − (L−21)[1](L−21)[1] − 2(L−21)[1].

To simplify the notation, we will now write Ln to denote (L−21)[n+1]. Using the Virasoro

relations we obtain that this is the same as

Ỹ = 2
∑
n≥2

L−nLn + L−1L1 + L1L−1 + L0L0 − L0L0 − 2L0

= 2
∑
n≥2

L−nLn + L−1L1 + L1L−1 − 2L0

= 2
∑
n≥2

L−nLn + 2L−1L1 + 2L0 − 2L0

= 2
∑
n≥2

L−nLn + 2L−1L1

= 2
∑
n≥2

L−nLn + 2(L−21)[0](L−21)[2],

and since
∑

n≥2 L−nLn ∈ N2U0, the proof is complete. □
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9. Questions

Here we ask a few other questions that arise from this work.

9.1. Not rational and strongly generated in higher degree. Keeping in mind the

example of the Virasoro VOA from Section 8 and Theorem 6.0.1, we ask the following:

Question 9.1.1. For V a C2-cofinite and non-rational VOA, not generated in degree 1,

can one always find a pair Z ⊂W whereW = ΦL(W0) is induced by an indecomposable

A0(V )-module W0, such that L0 acts on W0 as a scalar with eigenvalue cW ∈ C, and a

proper submodule Z ⊂W , with cZ − cW > 0 for every eigenvalue cZ of L0 on Z.

In Section 9.1.2 we provide an example of such a pair of modules Z ⊂ W for the

triplet vertex operator algebra W(p). This particular example was suggested to us in

a communication with Thomas Creutzig. Simon Wood gave us a proof of Claim 9.1.3,

a crucial detail for this example. The features of such an example (and that it should

exist for the triplet) were described to us by Dražen Adamović.

9.1.2. Triplet VOAs. Let W(p) denote the triplet vertex operator algebra. There are

2p simple W(p)-modules X+
s , and X−

s , for 1 ≤ s ≤ p. Following [TW13, Eq (2.39)], we

write X
±
s for the quotient A0(X

±
s ) = X±

s /I0(X
±
s ) which are simple modules over Zhu

algebra A = A0(W(p)). And in this case, one also has in the notation of [BVWY19a],

that Ω(X±
s ) = (X±

s )0 = X
±
s . In particular, since X

±
s is an A-module, we may consider

ΦL(X±
s ). Moreover, using for instance [TW13, Eq (3.8)], the eigenvalues of the action of

L0 on the indecomposable modules X
±
s , i.e. the conformal weights, satisfy cw(X−

p−s) >

cw(X+
s ). The induced module ΦL(X

+
s ) can be identified with a quotient of the projective

cover of X+
s , as follows. By [NT11, Proposition 4.5] (see also [TW13]) the projective

cover P+
s of X+

s has socle filtration of length three consisting of submodules S0 ⊂ S1 ⊂
S2 = P+

s with S0 ∼= X+
s
∼= S2/S1 and S1/S0 ∼= 2X−

p−s.

Claim 9.1.3. ΦL(X
+
s )
∼= P+

s /X
+
s

Proof. The A-module X
+
s is indecomposable, and as ΦL takes indecomposable modules

to indecomposable modules (eg. [DGK22]), one has that ΦL(X
+
s ) is an indecomposable

admissibleW(p) module. It follows that X
+
s will be the weight space of least conformal

weight in ΦL(X
+
s ), and as X+

s is generated by its lowest weight space X
+
s , we get a

canonical surjective map ΦL(X
+
s )→ X+

s . By projectivity, the map from the projective

cover P+
s → X+

s lifts to a map P+
s → ΦL(X

+
s ). As this map is surjective on the

least weight space, the weight of X+
s , and ΦL(X

+
s ) is generated by this subspace by

construction, the map P+
s → ΦL(X

+
s ) is surjective and so ΦL(X

+
s ) is a quotient of P+

s .

The kernel of this quotient must contain the socle (which isomorphic to X+
s ), other-

wise ΦL(X
+
s ) would have two composition factors isomorphic to X+

s contradicting the

size of its lowest weight space. The kernel cannot be larger, otherwise ΦL(X
+
s ) would

admit a nontrivial extension by X−
p−s (which as noted, has greater conformal weight

than X+
s ). Note that if we had such an extension 0 → X−

p−s → E → ΦL(X
+
s ) → 0,

the lowest weight spaces of E and ΦL(S
+
s ) would be isomorphic, producing a universal
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map ΦL(X
+
s ) → E whose composition with the map in the above sequence would be

the universal map from ΦL(X
+
s ) to itself – that is, the identity. Consequently we would

have a splitting of our exact sequence and the extension would be trivial. Thus ΦL(X
+
s )

is isomorphic to P+
s /X

+
s . □

In particular, by Claim 9.1.3, W = ΦL(X
+
s ) = S2/S0 would have a sub-module

isomorphic to Z = S1/S0 ∼= 2X−
p−s, and the conformal weight cw(Z) = cw(X−

p−s) would

then be strictly larger than the conformal weight cw(W ) = cw(X
+
s ).

Proposition 9.1.4. W(p) does not satisfy smoothing.

Proof. The example shows by Theorem 5.0.3 and Theorem 6.0.1 that the triplet does

not satisfy smoothing. □

9.1.5. More general triplet vertex algebras. In [FGST06, AM07, AM10, AM11] the more

general triplet vertex algebras Wp+,p− with p± ≥ 2 and (p+, p−) = 1 are studied. From

their results, for p+ = 2 and p− odd, the Wp+,p− are C2-cofinite and not rational. We

would like to know the answer to Question 9.1.1 for this family of VOAs.

9.1.6. Other C2-cofinite, non-rational VOAs from extensions. In [CKL20] the authors

discover three new series of C2-cofinite and non-rational VOAs, via application of the

vertex tensor category theory of [HLZ06, HLZ14], which are not directly related to the

triplets. They also list certain modules for these examples. We would like to know the

answer to Question 9.1.1 for these new families of VOAs.

9.2. Local freeness in case V does not satisfy smoothing.

Question 9.2.1. Are there particular choices of modules W • over a V that do not

satisfy smoothing, for which sheaves V(V ;W •) form vector bundles onMg,n?

By Corollary 5.2.6, if V satisfies smoothing, and if the sheaves of coinvariants are

coherent, they form vector bundles. However, if V does not satisfy smoothing, it is

still an open question about whether these sheaves are locally free. For instance one

could ask this for the triplet vertex algebras, which do not satisfy smoothing, but are

C2-cofinite, so their representations define coherent sheaves onMg,n.

9.3. Generalized Constructions. In Appendix A.9 the notion of triples of associative

algebras is introduced, and to a good triple (see Definition A.9.1) we associate many

of the standard notions affiliated with a VOA from higher level Zhu algebras to mode

transition algebras (see Appendix B.1 and Appendix B.2). Some of the results proved

here apply in this more general context. For instance, as was already noted in the

introduction, the exact sequence in (5), and Part (a) of Theorem 6.0.1 hold in this

generality. It would be interesting to further develop this theory, and it is therefore

natural to ask the following question:

Question 9.3.1. What are other examples of generalized (higher level) Zhu algebras

and generalized mode transition algebras, beyond the context of VOAs?
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Appendix A.

This appendix contains a number of details about graded and filtered completions,

and their relationships to one another. These serve to provide simple definitions of the

building blocks of our constructions and uniform proofs of their properties.

A.1. Filtrations. The purpose of this first section is to provide a framework in which

we can simultaneously discuss and compare filtered and graded versions of certain con-

structions. In particular, this will give us a language appropriate for dealing simulta-

neously with both graded and filtered versions of the universal enveloping algebra of a

vertex operator algebra which we recall in Definition 2.4.2.

Definition A.1.1 (Left and right filtrations). Let X be an Abelian group. A left

filtration on X is a sequence of subgroups X≤n ⊂ X≤n+1 ⊂ X for n ∈ Z. Similarly, a

right filtration on X is a sequence of subgroups X≥n ⊂ X≥n−1 ⊂ X for n ∈ Z.

Remark A.1.2. If X has a left filtration of subgroups X≤n we may produce a right

filtration by setting X≥n = X≤−n. Hence the concepts of left and right filtrations are

essentially equivalent. We will work in this section exclusively with left filtrations, but

will have use for both left and right filtrations eventually. The reader should therefore

keep in mind that the results in this section all have their right counterparts. If X is a

graded Abelian group, we can naturally regard it as filtered by setting X≤n = ⊕i≤nXn.

Notation A.1.3. If X is a filtered Abelian group and S ⊂ X is a subset, we write S≤n

to mean S ∩X≤n.

We will now introduce some concepts which we will use throughout.

Definition A.1.4 (Exhaustive filtration). Let X be a (left) filtered Abelian group. We

say that the filtration on X is exhaustive if
⋃

nX≤n = X and separated if
⋂

nX≤n = 0.

Definition A.1.5 (Splittings of filtrations). Given a (left) filtered Abelian group X,

we define the associated graded group to be grX =
⊕

n (X≤n/X≤n−1). A splitting of

X is defined to be a graded subgroup X ′ =
⊕

nX
′
n ⊂ X with X ′

n ⊂ X≤n such that for

each n, the induced map X ′
n → (grX)n is an isomorphism.

Definition A.1.6 (Split-filtered Abelian groups). A split-filtered Abelian group is a

filtered Abelian group (X,≤) together with a graded Abelian group X ′ = ⊕nX
′
n, and

an inclusion X ′ ⊂ X which defines a splitting as in Definition A.1.5.

Notation A.1.7. For X a split-filtered Abelian group, and x ∈ X≤n, we write xn ∈ X ′
n

and x<n ∈ X≤n−1 for the unique elements such that x = xn + x<n.

Example A.1.8 (Concentrated split-filtrations). If X is an Abelian group, with no

extra structure, we may define a split filtered structure on it, X[d], which we refer to

as “concentrated in degree d,” by:

X[d]≤p =

0 if p < d,

X if p ≥ d.
and X[d]′p =

0 if p ̸= d,

X if p = d.
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If X is an Abelian group, with no extra structure, we may define the trivial split-

filtration on X to be X[0].

Example A.1.9. If X =
⊕

nXn is a graded Abelian group, we may also consider it as

a split Abelian group with respect to the filtration X≤n =
⊕

p≤nXp. In this case the

inclusion of X into itself provides the splitting.

Definition A.1.10 (Split-filtered maps). If X and Y are split-filtered Abelian groups

and d ∈ Z, we say that a group homomorphism f : Y → X is a map of degree d if

f(Y≤p) ⊂ X≤p+d and f(Y ′
p) ⊂ X ′

p+d for all p.

Definition A.1.11 (Split-filtered subgroups). If X and Y are split filtered Abelian

groups with Y ⊂ X, we say Y is a split-filtered subgroup of X is the inclusion is a

degree 0 map of split-filtered Abelian groups.

Lemma A.1.12. Let f : X → Y be a degree d homomorphism of split-filtered Abelian

groups. Then ker f is a split-filtered subgroup of X.

Proof. We verify that (ker f)≤p = (ker f ′)p + (ker f)≤p−1, where f ′ : U ′
p → U ′

p+d is

the restriction of f . For this, we simply note that by definition, f induces a map

U ′
p ⊕ U≤p−1 → U ′

p+d ⊕ U≤p+d−1 which preserves the decomposition. □

The following lemma is straightforward to verify.

Lemma A.1.13. Suppose f : Y → X is a degree d map of split-filtered Abelian groups.

Then restricting the filtration on X to the image of f , we find (im f)≤p = im
(
f |Y≤p−d

)
.

Further, im f ′ ⊂ im f defines a splitting, giving im f the structure of a split-filtered

Abelian group.

Lemma A.1.14. Suppose f : Y → X is a degree d map of split-filtered Abelian groups.

Then coker(f ′) ⊂ coker(f) defines a splitting, giving coker(f) the structure of a split-

filtered Abelian group.

Proof. Via Lemma A.1.13, we know that im(f ′) ⊂ im(f) defines a split-filtered structure

on im(f). As coker(f) = coker (im(f)→ X), it therefore suffices to consider the case

where f is injective. We have a diagram of (split) short exact sequences:

0 // Y ′
p

��

// Y≤p
//

��

Y≤p−1

��

// 0

0 // X ′
p

// X≤p
// X≤p−1

// 0,

where the vertical maps are injections. By the snake lemma, this gives a split short exact

sequence of cokernels (X/Y )≤p = (X ′/Y ′)p ⊕ (X/Y )≤p. In particular, the inclusion

Xp → X≤p induces an inclusion (X ′/Y ′)p ⊂ (X/Y )≤p giving our desired splitting. □

Proposition A.1.15. The category of split-filtered Abelian groups is an Abelian cate-

gory which is cocomplete, i.e. closed under colimits.

Proof. The fact that we have an Abelian category is a consequence of Lemma A.1.14,

Lemma A.1.13, Lemma A.1.12. By [Wei94, Prop. 2.6.8] cocompleteness follows from
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being closed under direct sums, which can be checked by noticing that
⊕

λ∈ΛX
λ is

split-filtered with respect to the graded subgroup
⊕

λ∈Λ(X
λ)′. □

A.2. Modules and tensors.

Definition A.2.1. Let R be a ring and M a left (or right) R-module. We say that M

is a split-filtered R module if it is a split filtered Abelian group and M≤n, M
′ and M ′

n

are R-submodules of M for all n.

Definition/Lemma A.2.2. Let R be a split-filtered ring, M a split-filtered right R-

module andN a split-filtered left R-module. ThenM⊗RN is naturally a split-filtered R-

module by defining (M⊗RN)≤n =
⊕

p+q=n
M≤p⊗RN≤q and (M⊗RN)′n =

⊕
p+q=n

M ′
p⊗RN

′
q.

Proof. Consider first the case where R is concentrated in degree 0 (see Example A.1.8)

so that multiplication by elements of R is a degree 0 map. In this case,

M≤p ⊗R N≤q = (M ′
p +M≤p−1)⊗R (N ′

q +N≤q−1)

=M ′
p ⊗R N

′
q +M≤p−1 ⊗R N

′
q +M ′

p ⊗R N≤q−1 +M≤p−1 ⊗R N≤q−1

⊆ (M ′ ⊗R N
′)n ⊕ (M ⊗R N)≤n−1.

This shows (M ⊗R N)≤n ⊆ (M ′ ⊗R N ′)n ⊕ (M ⊗R N)≤n−1. The other inclusion is

straightforward.

Next consider the general case when R is nontrivially split-filtered, and the map

µ : M ⊗Z R ⊗Z N → M ⊗Z N given by µ(x ⊗ r ⊗ y) = xr ⊗ y − x ⊗ ry. By definition,

M ⊗R N is defined as the cokernel of this map. Regarding the domain and codomain

as split-filtered via the first part of the proof, we see that this is a degree 0 map of

split-filtered Abelian groups. So by Lemma A.1.14, the cokernel is split filtered. □

A.3. Rings and ideals.

Definition A.3.1 (Filtered rings). If U is a filtered Abelian group with a (not nec-

essarily associative, not necessarily unital) ring structure, we say that it is a filtered

ring if U≤pU≤q ⊂ U≤p+q. If U is a filtered ring and we are given U ′ a graded subring

providing a splitting, we say U is a split-filtered ring.

Lemma A.3.2. Let U be a split-filtered ring and let S, T ⊂ U be arbitrary split-

filtered additive subgroups. Then ST is split filtered with (ST )≤n =
∑

p+q=n S≤pT≤q

and (ST )′n =
∑

p+q=n S
′
pT

′
q.

Proof. If we consider the tensor product S ⊗Z T , with its split-filtered structure of

Definition/Lemma A.2.2, we see that the multiplication map S ⊗Z T → ST ⊂ U is a

degree 0 map of split-filtered groups. The result now follows from Lemma A.1.13. □

Lemma A.3.3. Let U be a split-filtered associative, unital ring, and let X ⊂ U be a

split-filtered additive subgroup. Then the ideal generated by X in U is also split-filtered

with homogeneous part the ideal of U ′ generated by X ′.
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Proof. It follows from Definition/Lemma A.2.2 that U ⊗Z X ⊗Z U is split filtered with

homogeneous part U ′ ⊗Z X
′ ⊗Z U

′. As the multiplication map U ⊗Z X ⊗Z U → U is a

map of degree 0, it follows that its image, the ideal generated by X is split-filtered. □

Lemma A.3.4. Suppose L is a split-filtered Lie algebra over a commutative (associative

and unital) ring R. Then the universal enveloping algebra U(L) is a split-filtered algebra

with respect to the graded subalgebra U(L′) ⊂ U(L).

Proof. It follows from Definition/Lemma A.2.2 and Proposition A.1.15 that the tensor

algebra T (L) is split-filtered with respect to T (L′). Let X ⊂ T (L) be the image of the

map L ⊗Z L → T (L) defined by x ⊗ y 7→ x ⊗ y − yx − [x, y] (note the tensor in the

preimage is over Z and in the image is over R). As this is a map of degree 0, its image

X is split-filtered with homogeneous part spanned by the analogous expressions with

homogeneous elements. By Lemma A.1.13, it follows that the ideal generated by X is

also split-filtered. Finally Lemma A.1.14 tells us that the quotient by this ideal, the

universal enveloping algebra, is also split filtered as described. □

A.4. Seminorms. The algebraic structures which naturally arise in studying the uni-

versal enveloping algebras of a VOA come with additional topological structure in the

form of a seminorm. In this section we will examine seminorms and their interactions

with gradings, filtrations and split-filtrations.

Definition A.4.1. A system of neighborhoods of 0 in an Abelian groupX is a collection

of subgroups NnX ⊂ X, n ∈ Z, such that NnX ⊂ Nn−1X and
⋃

nN
nX = X.

Remark A.4.2 (Systems of neighborhoods, seminorms and pseudometrics). The notion

of a system of neighborhoods is equivalent to the notion of an Abelian group seminorm,

where we would set |x| = e−n if x ∈ NnX \ Nn+1X or |x| = 0 if x ∈
⋂

nN
nX. Such a

seminorm also gives rise to a pseudometric by setting d(x, y) = |x − y|. Finally, these

give rise to a topology on X whose basis is given by open balls with respect to this

pseudometric. We see that addition is continuous with respect to this topology.

With this remark in mind, we will refer to systems of neighborhoods of 0 and semi-

norms interchangeably, and will often refer to an Abelian group with a system of neigh-

borhoods of 0 as a seminormed Abelian group.

Remark A.4.3. It follows from the definition that a system of neighborhoods (and

hence a seminorm) is precisely the same as an exhaustive right filtration. We may

therefore consider the seminorm associate to either a right or left exhaustive filtration

(in view of Remark A.1.2).

Definition A.4.4 (Restriction of seminorms). If X is a seminormed Abelian group

and Y ⊂ X is a subgroup, we will consider Y a seminormed Abelian group via the

restriction of the seminorm. That is, we set NnY = NnX ∩ Y .

Definition A.4.5 (Seminormed rings and modules). Let U be a ring which is semi-

normed as an Abelian group. We say that U is a seminormed ring if |xy| ≤ |x||y|, or,
equivalently, (NpU)(NqU) ⊂ Np+qU . If M is a left U -module which is seminormed as
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an Abelian group, we say that it is a seminormed left module if |xm| ≤ |x||m| for all

x ∈ R, m ∈M .

Remark A.4.6. It follows immediately from Definition A.3.1 that a filtered ring (not

necessarily associative or unital) becomes a seminormed ring with respect to the semi-

norm induced by the filtration as in Remark A.4.3, and that multiplication map is

continuous with respect to the induced topology.

Warning A.4.7. We will often consider seminorms on rings which are not ring semi-

norms, but just Abelian group seminorms.

Definition A.4.8 (Split-filtered seminorms). Let X be an split-filtered Abelian group.

We say that a seminorm is split-filtered if each of its neighborhoods NnX are split-

filtered subgroups of X. In this case we will simply refer to X as a split-filtered semi-

normed Abelian group.

The following notion captures a property that we will often seek: that smaller filtered

parts of a given filtered Abelian group lie in progressively smaller neighborhoods.

Definition A.4.9 (Tight seminorms). Suppose X is a filtered seminormed Abelian

group. We say that the X is tightly seminormed if for all m, p there exists d such that

X≤−d ⊂ NmX≤p.

Lemma A.4.10. Suppose X is a split-filtered seminormed Abelian group whose semi-

norm is tight. Then X ′ is dense in X.

Proof. Let x ∈ X. We can choose n, p with x ∈ NnX≤p ⊂ X. For any m, we need to

show that there exists x′ ∈ X ′ with x − x′ ∈ NmX. We can write NnX≤p = NnX ′
p ⊕

NnX≤p−1 and iterating this expression, we find NnX≤p =
⊕p

i=p−d+1N
nX ′

i ⊕ NnX≤p−d

for any d > 0. But by the tightness of the seminorm, choosing d >> 0 we can ensure

NnX≤p−d ⊂ X≤p−d ⊂ NmX≤p−d ⊂ NmX≤p. In particular, we may write x = x′ + y

with x′ ∈
⊕p

i=p−d+1N
nX ′

i ⊂ X ′ and y ∈ NmX≤p as desired. □

A.5. Graded and filtered completions.

Definition A.5.1 (Graded-complete and filtered-complete Abelian groups). Let X be

a normed Abelian group. If X is graded, we say that it is graded-complete if each of

the graded subspaces Xn is complete. If X is filtered, we say that is is filtered-complete

if each subspace X≤n is complete.

Definition A.5.2 (Short homomorphisms). Let X,Y be seminormed Abelian groups.

A group homomomorphism f : X → Y is called a short (or metric) homomorphism if

|f(x)| ≤ |x| for all x ∈ X.

Definition/Lemma A.5.3 (Separated completions). Let X be a seminormed Abelian

group. Then we may form the (separated) completion “X ofX, which a complete normed

Abelian group equipped with a short map ι : X → “X which is universal for short maps

to complete normed Abelian groups. That is, for every complete normed Abelian group

Y and short homomorphism X → Y , there is a unique factorization of this map as

X
ι→ “X → Y .
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This can be constructed in the usual way via equivalence classes of Cauchy sequences.

The following Lemma is a consequence of the fact that a metric space maps injectively

into its completion:

Lemma A.5.4. Let X be a seminormed Abelian group. Then the canonical map X → “X
has kernel

⋂
n∈ZN

nX. In particular, X → “X is injective exactly when the seminorm

on X is actually a norm.

Lemma A.5.5. Let W ⊂ Z ⊂ X be subgroups of a seminormed Abelian group X. Then

in the induced seminorm on Z/W , the separated completion of Z/W can be identified

with Ẑ/Ŵ , and Ẑ, Ŵ can be identified with the closures of the images of Z and W in“X respectively.

Proof. The latter identification of completions and closures is straightforward to check.

We note that there is a universal map Ẑ →◊�(Z/W ) of separated completions with W

in the kernel. But as the image is Hausdorff, it follows that W must also be in the

kernel. But now we see that the map Z/W → Ẑ/Ŵ is therefore universal giving us

Ẑ/Ŵ ∼=◊�(Z/W ) as desired. □

We have various closely related universal constructions as follows.

Definition/Lemma A.5.6 (Filtered and graded completions). LetX be a seminormed

Abelian group. If X is graded then we can construct a short homomorphism X → “Xg

which is universal for short homomorphisms to graded-complete Abelian groups. If X

is filtered then we can construct a short homomorphism X → “X f which is universal for

short homomorphisms to graded-complete Abelian groups.

Proof. We set “Xg =
⊕

n
“Xg
n where “Xg

n = ”Xn, and “X f =
⋃

n
“X f
≤n where “X f

≤n = ‘X≤n. □

Remark A.5.7. These are also described in [MNT10] as the degreewise completion

and the filterwise completion respectively.

Lemma A.5.8. For X a split-filtered tightly seminormed Abelian group, “X f is a split-

filtered tightly seminormed Abelian group with respect to the graded subgroup X̂ ′g.

Proof. Let us note that the natural morphism X̂ ′g → “X f is an inclusion. For this,

suppose that we have a pair of Cauchy sequences (an), (bn) in X
′
p which have the same

image in “X f. Without loss of generality, we may select subsequences and re-index

(possibly after modifying our starting index so an appropriate integer), and assume

an − bn ∈ NnX≤p for all n. But as NnX ′
p = NnX≤p ∩ X ′

p tells us that these Cauchy

sequences have the same limit in X̂ ′g as well, giving injectivity.

Next we check that “X f
≤p−1 ∩ X̂ ′g

p = 0. Suppose we have an equality of classes of

Cauchy sequences (xn) = (yn) where xn ∈ X≤p−1, yn ∈ X ′
p and xn − yn ∈ NnX≤p. We

claim that we may replace (yn) by an equivalent Cauchy sequence with yn ∈ X≤p−d for

all d > 0. To see this by induction, suppose yn ∈ X≤p−(d−1) we use the fact that our

seminorm is split filtered to write yn = y′n + y′′n with y′n ∈ X≤p−d and y′′n ∈ Xp−(d−1).

As xn − yn = xn − y′n − y′′n ∈ NnX≤p and

NnX≤p = NnXp +NnX≤p−1 = · · · = NnXp ⊕NnXp−1 ⊕ · · · ⊕NnXp−d+1 ⊕NnX≤p−d,
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By uniqueness of our expressions, y′′n ∈ NnXp−d+1 for all n. Consequently lim
n→∞

y′′n = 0,

which says the Cauchy sequences (yn) and (y′n) are equivalent. This verifies our claim.

Now, we claim that (yn) = 0. By definition of the completion, this amounts to

(yn) ∈ NmX≤p−1 for all m. By our hypothesis, for any m there exists d′ such that

X≤−d′ ⊂ NmX≤p−1. In particular, choosing d = d′ + p in the prior argument, we find

that we may choose a Cauchy sequence (y′n) equivalent to the first, with y′n ∈ X≤−d′ ⊂
NmX≤p−1, showing that (y′n) ∈ Nm“X f

≤p−1 for all m, verifying our claim.

Now we check Nn“X f
≤p ⊂ Nn“X f

≤p−1 + NnX̂ ′g
p. For this, let

∑
xi ∈ Nn“X f

≤p be a

convergent infinite series. Without loss of generality, we may assume xi ∈ Nn+iX≤p

for all i. As our seminorm is split-filtered, we can write xi = (xi)p + (xi)<p as in

Notation A.1.7. But now we see that the sums
∑

i(xi)p and
∑

i(xi)<p both converge in

NnX̂ ′g
p and Nn“X f

≤p−1 respectively, showing that
∑
xi ∈ Nn“X f

≤p−1 +NnX̂ ′g
p as desired.

As “X f =
⋃

nN
n“X f and X̂ ′g =

⋃
nN

nX̂ ′g we conclude that X is split-filtered semi-

normed by Proposition A.1.15.

To check that it is tightly seminormed, We notice that whenever X≤−d ⊂ NmX≤p we

find that, upon taking closures in “X f
≤p, that

“X f
≤−d ⊂ Nm“X f

≤p, showing that “X f is also

tightly seminormed (with the same choice of d for a given m, p). □

Remark A.5.9. In light of this result, it makes sense to refer to “X f as the completion

of X, when X is split-filtered, with the understanding the that graded subgroup is given

by X̂ ′g. In the case X = “X f, we say X is complete.

Definition/Lemma A.5.10. Suppose X is a split-filtered, tightly seminormed, com-

plete Abelian group, and suppose Y ⊂ X is a split-filtered subgroup. Define the closure

Y of Y in X to be the filtered subgroup with Y ≤p the closure of the image of Y≤p in

X≤p and Y ′
p the closure of the image of Y ′

p in X ′
p. Then Y is split-filtered with respect

to the graded subgroup Y ′.

Proof. It follows from the definition that the restriction of a tight seminorm is again a

tight seminorm. As we can identify the closures with the completions by Lemma A.5.5,

the result follows from Lemma A.5.8. □

A.6. Canonical seminorms. The seminorms used in studying universal enveloping

algebras of VOAs arise in a very specific way, as described in [TUY89, FZ92, FBZ04,

Fre07, NT05, MNT10]. We will recall an generalized definition of these seminorms, as

in [MNT10], and then examine some abstract features in the context of split-filtrations,

which will allow us to relate the filtered and graded versions.

Definition A.6.1 (The canonical seminorm). Let U be a filtered ring. The canonical

system of neighborhoods on U is defined by cNnU = UU≤−n (a left ideal of U if U is

associative). We will write c| · | for the corresponding canonical seminorm.

Lemma A.6.2. Suppose U ′ ⊂ U is a split-filtered ring. Then the canonical seminorm

is split-filtered and tight.

Proof. Suppose u ∈ cNnU≤p. By Lemma A.3.2, we can write u as a sum of elements of

the form αβ with α ∈ U≤a and β ∈ U≤b with a+ b = p and b ≤ −n.
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Using our splitting we may write α = α+α′ and β = β+β′ with α ∈ U ′
a, α

′ ∈ U≤a−1,

β ∈ U ′
b, β

′ ∈ U≤b−1, and so we have α′β ∈ cNnU≤p−1 giving us:

αβ = αβ+αβ′ +α′β+α′β′ ∈ cNnU ′
p +

cNnU≤p−1 +
cNn+1U≤p−1 =

cNnU ′
p +

cNnU≤p−1.

It follows that cNnU≤p ⊂ cNnU≤p−1 +
cNnU ′

p, and hence cNnU≤p =
cNnU≤p−1 +

cNnU ′
p,

showing the canonical seminorm is split filtered.

To check that it is tight, we simply notice that for any m, p, we have for d ≥
max{m,−p}, X≤−d ⊂ X≤p ∩ cNmX = cNmX≤p. □

The following Lemmas are easily verified.

Lemma A.6.3. Let U be a filtered associative ring. Then for any p, q, n ∈ Z, we have

(cNnU≤p)U≤q ⊂ cNn−qU≤p+q and U≤p (
cNnU≤q) ⊂ cNnU≤p+q.

Lemma A.6.4. Let f : X → Y be a surjective filtered homomorphism of filtered asso-

ciative rings. Then f(cNnX) = cNnY .

By Lemma A.6.5, a useful property of the canonical topology is that multiplication

is continuous with respect to it, at least when restricted to the various filtered parts.

Lemma A.6.5. Let U be a filtered associative ring equipped with a seminorm such that

(NnU≤p)U≤q ⊂ Nn−qU≤p+q and U≤p (N
nU≤q) ⊂ NnU≤p+q.

Then for any p, q, the multiplication map U≤p×U≤q → U≤p+q is continuous with respect

to the seminorm in both variables. Consequently, the completion “U f naturally has the

structure of an associative ring.

Remark A.6.6. It follows that under these hypotheses, if U and its seminorm is split-

filtered, then the multiplication map U ′
p × U ′

q → U ′
p+q is also continuous (being the

restriction of a continuous map). Consequently, in this case, the completion “U f is also

a split-filtered associative ring, which is tightly split-filtered if U is (by Lemma A.5.8).

Proof. Let u1 ∈ U≤p, u2 ∈ U≤q. Then we must show that multiplication is continuous

with respect to both variables at (u1, u2). That is, given d ∈ Z, we must show there

exist n1, n2 such that (u1 + Nn1U≤p)u2 ⊂ u1u2 + NdU≤p+q and u1(u2 + Nn2U≤q) ⊂
u1u2 + NdU≤p+q. By our hypotheses, for n2 ≥ d, we have u1(u2 + Nn2U≤q) ⊂ u1u2 +

Nn2U≤p+q ⊂ u1u2+NdU≤p+q. On the other hand, for n1 ≥ q+d, we find (Nn1U≤p)u2 ⊂
(Nn1U≤p)U≤q ⊂ Nn1−qU≤p+q ⊂ NdU≤p+q, as desired. □

Remark A.6.7. If U is a split-filtered seminormed ring with cNnU≤p ⊂ NnU≤p then

by Lemma A.6.2, it is tightly seminormed.

The canonical seminorm on a split-filtered associative ring has a number of useful

properties which we would like to axiomatize. As we have seen, it is tight and split-

filtered (Lemma A.6.2) and verifies the identities of Lemma A.6.3.

Definition A.6.8. Let U be a split-filtered seminormed associative ring. We say the

seminorm is almost canonical if it verifies the following conditions:
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(a) the seminorm is split filtered,

(b) NnU≤p =
cNnU≤p +Nn+1U≤p for all n, p,

(c) (NnU≤p)U≤q ⊂ Nn−qU≤p+q and U≤p (N
nU≤q) ⊂ NnU≤p+q for all p, q, n.

Lemma A.6.9. Let U be a split-filtered almost canonically seminormed associative ring.

Then NnU ′
p =

cNnU ′
p +Nn+1U ′

p for all n, p.

Proof. Using the fact that the seminorm is split filtered and Definition A.6.8 (b), we

have NnU ′
p + NnU≤p−1 = cNnU ′

p +
cNnU≤p−1 + Nn+1U ′

p + Nn+1U≤p−1 from which the

result follows looking modulo U≤p−1. □

Lemma A.6.10. Let U be a split-filtered seminormed associative ring. Then the fol-

lowing are equivalent:

(a) NnU≤p =
cNnU≤p +Nn+1U≤p for all n, p,

(b) NnU≤p =
cNnU≤p +Nn+dU≤p for all n, p and d > 0,

(c) cNnU≤p is contained in and dense in NnU≤p.

Proof. This follows by iterating the expression in part (a). □

Lemma A.6.11. Let f : X → Y be a surjective map of split-filtered associative rings,

and suppose X is endowed with an almost canonical seminorm. Then the system of

neighborhoods NnY≤p = f(NnX≤p) defines an almost canonical seminorm on Y .

Proof. By Lemma A.6.4 the image of the canonical neighborhoods in X are canonical

neighborhoods in Y , and by definition the images of neighborhoods in X are neighbor-

hoods in Y . The result then follows directly by applying the homomorphism f to the

properties of Definition A.6.8 (b) and (c). □

Lemma A.6.12. Suppose U is a split-filtered associative ring with an almost canonical

seminorm. Then the induced norm on the filtered completion “U f is also almost canonical.

Proof. By Remark A.6.7 and Lemma A.5.8, “U f is split-filtered and tightly seminormed,

implying that “U f satisfies Definition A.6.8 (a). We proceed to Definition A.6.8 (b)

using the equivalent conditions of Lemma A.6.10. As the neighborhoods Nn“U f
≤p can be

identified as the closure of the image of NnU≤p and
cNnU≤p is dense in NnU≤p, it follows

that the image of cNnU≤p is dense in Nn“U f
≤p. But as the image of cNnU≤p is contained

in cNn“U f
≤p, it follows that

cNn“U f
≤p is also dense in Nn“U f

≤p, verifying Definition A.6.8 (b).

We verify the first part of Definition A.6.8 (c) (the second part is analogous). The

multiplication map NnU≤p×U≤q → U≤p+q is continuous by Lemma A.6.5 and it factors

through Nn−qU≤p+q. By continuity, taking closures (of the images) in the completions“U f
≤p,
“U f
≤q,
“U f
≤p+q of U≤p, U≤q, U≤p+q respectively, we find that our map extends to a

continuous map NnU≤p × U≤q → U≤p+q which factors through Nn−qU≤p+q. Since the

closure of the image in a completion can be identified with the completion itself, and

NnU≤p = Nn“U f
≤p, N

n−qU≤p+q = Nn−q“U f
≤p+q, we interpret our multiplication as a con-

tinuous map Nn“U f
≤p ×“U f

≤q → “U f
≤p+q which factors through Nn−q“U f

≤p+q, as desired. □
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A.7. Completed tensors. Completed tensors, introduced here in Definition A.7.2,

make a number of arguments more natural.

Definition A.7.1 (Seminorm on tensors). Let R be a seminormed ring, M a right

seminormed R-module and N a left seminormed R-module. We define a seminorm on

M ⊗R N by the following neighborhoods of 0:

Nn(M ⊗R N) =
∑

p+q=n

im
(
(NpM ⊗N0R NqN)→M ⊗R N

)
.

Definition A.7.2. (Complete tensors) Let R be a seminormed ring, M a right semi-

normed R-module, and N a left seminormed R-module. The complete tensor product

M“⊗RN is defined to be the completion of the seminormed Abelian groupM ⊗RN with

seminorm as described in Definition A.7.1.

Definition/Lemma A.7.3 (Complete tensors, filtered and graded). Let R be a semi-

normed ring, M a right seminormed R-module and N a left seminormed R-module. If

R,M,N are graded then we can construct a short homomorphism M × N → M“⊗g
RN

which is universal for R-bilinear maps to graded-complete Abelian groups. If R,M,N

are filtered then we can construct a short homomorphism M ×N → M“⊗f
RN which is

universal for R-bilinear maps to filtered-complete Abelian groups.

Proof. These are M“⊗g
RN = ÿ�M ⊗R N

g
and M“⊗f

RN = ÿ�M ⊗R N
f
respectively. □

A.8. Discrete quotients. This section will be particularly useful in construction of

generalized Verma modules and new algebraic structures (the mode transition algebras

of Section 3.2) which will play an important role for us.

If U is a filtered ring, then U≤0 is always a subring and U≤−n for n > 0 is a two-sided

ideal of U≤0. Moreover, for n > 0, we have U ⊗U≤0
U≤0/U≤−n = U/UU≤−n = U/cNnU .

Lemma A.8.1. Suppose U is a split-filtered almost canonically seminormed ring. Then

U“⊗f
U≤0

U≤0/U≤−n
∼= “U f/[Nn“U f ∼= Û ′g/NnÛ ′g ∼= U ′“⊗g

U ′
≤0
U ′
≤0/U

′
≤−n

with isomorphism induced by the continuous map U ⊗U≤0
U≤0/U≤−n → U/NnU via

u⊗ a 7→ ua.

In particular, as a topological space, these have the discrete topology.

Proof. It is immediate that, assuming the claimed equalities hold, the natural quotient

topology on Û ′g/NnÛ ′g is discrete.

As we have noticed, U⊗U≤0
U≤0/U≤−n

∼= U/cNnU . We can therefore identify the sepa-

rated completion of U≤p⊗U≤0
U≤0/U≤−n with the separated completion of U≤p/

cNnU≤p.

But since cNnU≤p = NnU≤p by Lemma A.6.10, the isomorphism U“⊗f
U≤0

U≤0/U≤−n
∼=“U f/Nn“U f follows by Lemma A.5.5.

Next, we note that the natural map Û ′g → “U f/Nn“U f has kernel NnÛ ′g. As U ′
≤−m ⊂

cNnU ⊂ NnU for m≫ 0 it follows that our map U ′ → “U f/Nn“U f, which has dense image

by Lemma A.4.10 factors through the surjection U ′/U ′
≤−m → U ′/NnU ′. In particular,

the restriction of this map to U ′
≤p/U

′
≤−m factors through ¤�U ′

≤p/U
′
≤−m and hence the
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image of this part coincides with the image of ‘U ′
≤p

g
. But ¤�U ′

≤p/U
′
≤−m =

⊕
−m<i≤p

“U ′
i =⊕

−m<i≤p
Û ′g

i . We therefore find that the map Û ′g
≤p → “U f

≤p/N
n“U f

≤p factors through⊕
−m<i≤p

Û ′g
i which is a complete space. As this map has dense image, it is surjective and

from our prior description of the kernel, we see Û ′g
≤p/N

nÛ ′g
≤p
∼= “U f

≤p/N
n“U f

≤p. Taking

a union over all p gives the identification “U f ∼= Û ′g/NnÛ ′g.

Making the same observations as in the beginning of the proof with U ′ instead of U ,

we may identify the separated completion of U ′
≤p ⊗U ′

≤0
U ′
≤0/U

′
≤−n with the separated

completion of U ′
≤p/

cNnU ′
≤p. Choosing m as in the previous paragraph, we find that we

have a surjective map U ′/U ′
≤−m → U ′/NnU ′ which allows us to identify the separated

completion of U ′
≤p/

cNnU ′
≤p with Û ′g

≤p/N
nÛ ′g

≤p as desired. □

A.9. Triples of associative algebras. In this section we collect some of our previous

facts which will be useful for the construction of our universal enveloping algebras of

a VOA. As we simultaneously construct and relate three versions of the enveloping

algebra (left, right and finite Definition 2.4.2), we will therefore introduce notions for

working with triples of associative algebras here.

Definition A.9.1. A good triple of associative algebras (UL, U ′, UR) consists of the

data of a left split-filtered associative algebra UL, and split-filtered associative algebra

UR such that U ′ is graded subalgebra of both UL and UR.

Definition A.9.2. A morphism of good triples (XL, X ′, XR) → (Y L, Y ′, Y R) is a pair

of degree 0 maps of split-filtered associative algebras XL → Y L and XR → Y R which

agree on X ′ → Y ′.

Definition A.9.3. A good seminorm on a good triple of associative algebras (UL, U ′, UR)

consists of almost canonical split-filtered seminorms on UL and UR defined by neigh-

borhoods Nn
LU

L and Nn
RU

R respectively such that Nn
LU

′
p = Nn−p

R U ′
p.

Remark A.9.4. We note that in the case p = 0 we have Nn
LU

′
0 = Nn

RU
′
0, and in this

case we can unambiguously write NnU ′
0 for each. Also in this case, it follows from

Definition A.6.8 (c) that NnU ′
0 is a two sided ideal of U ′

0.

Lemma A.9.5. Suppose (UL, U ′, UR) is a good triple of associative unital algebras and

I ◁ U ′ is a homogeneous ideal. Let IL = ULIUL and IR = URIUR be the ideals of UL

and UR generated by I. Then (IL, I, IR) is a good triple (of ideals).

Proof. We note that the triple (I, I, I) is good, where we regard I itself as left and right

filtered as in Example A.1.9. The result now follows from Lemma A.3.3, in light of the

observation that the ideal generated by I in U ′ is I itself. □

The following Lemma is an immediate consequence of Definition/Lemma A.5.10.

Lemma A.9.6. Let (UL, U ′, UR) be a good triple of associative unital algebras and

(IL, I, IR) a good triple of ideals. Then the closures (I
L
, I, I

R
) is a good triple of ideals.
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Remark A.9.7. If our seminorms on a triple (UL, U ′, UR) are canonical, they are easily

verified to be good: it is split-filtered by Lemma A.6.2 and satisfies the other conditions

of Definition A.6.8 by definition of the canonical seminorm and by Lemma A.6.3.

Definition A.9.8. If (UL, U ′, UR) is a good triple with a good seminorm, it’s completion

is the triple

Å”UL
f
, Û ′g,”UR

f
ã
. We say that triple is complete if these are the same

seminormed triple under the canonical map.

The following two results show that, in the appropriate sense, the class of good triples

with good seminorms are closed under completions and homomorphic images.

Corollary A.9.9. If (XL, X ′, XR) → (Y L, Y ′, Y R) is a surjective map of good triples,

and (XL, X ′, XR) has a good seminorm, the induced seminorm on (Y L, Y ′, Y R) is good.

Proof. This is an immediate consequence of Lemma A.1.14 and Lemma A.6.11. □

Corollary A.9.10. Good triples with good seminorms are closed under the operation

of completion.

Proof. This is an immediate consequence of Lemma A.6.12. □

Appendix B. Generalized Verma modules and mode transition algebras

In this section, our basic object will be a graded seminormed algebra. While such an

algebra may come as part of a triple as described in the previous section, the graded

structure will play the decisive role here. We will, however, occasionally regard our

graded algebra as also (split-)filtered as in Example A.1.9.

B.1. Generalized higher Zhu algebras and Verma modules.

Definition B.1.1. For a graded, seminormed algebra U , we define the generalized n-th

Zhu algebra as An(U) = U0/N
n+1U0.

For α ∈ U0, we write [α]n to denote the image of α in An(U), and write [α] if n is

understood. Observe that An(U) = 0 if n ≤ −1 since NiU0 = U0 whenever i ≤ 0.

Definition B.1.2. If U is a graded algebra with an almost canonical seminorm and

W0 is a left An(U)-module, we define a U -module ΦL
n(W0) by

ΦL
n(W0) =

(
U/Nn+1

L U
)
⊗U0 W0 =

(
U/Nn+1

L U
)
⊗An(U) W0.

We will generally write ΦL(W0) for Φ
L
0(W0). Following [FZ92, DLM98] we define:

Definition B.1.3. If U is a graded algebra with an almost canonical seminorm and W

is a left U -module, we define an An(U)-module Ωn(W ) by

Ωn(W ) = {w ∈W | (Nn+1
L U)w = 0}.

We can show that the functors ΦL have the following universal property:

Proposition B.1.4. Let M be a U -module and W0 an An(U)-module. Then there is a

natural isomorphism of bifunctors:

HomAn(U)(W0,Ωn(M)) = HomU (Φ
L
n(W0),M).



50 C. DAMIOLINI, A. GIBNEY, AND D. KRASHEN

In Section 3.1.4 we use Proposition B.1.4 (there given by Proposition 3.1.2) to con-

clude that Zhu’s original induction functor is naturally isomorphic to ΦL.

Proof. We describe the equivalence as follows. For f : W0 → Ωn(M) we define a map

g : ΦL
n(W0) → M by g(u ⊗m) = uf(m). Note that if u ∈ Nn+1

L U then uf(m) = 0 as

f(m) ∈ Ωn(M). In the other direction, if we are given g : ΦL
n(W0) → M , we note that

the natural map W0 → ΦL
n(W0) defined by w 7→ 1⊗ w is injective and by definition of

the U -module structure of ΦL
n(W0), has image lying inside Ωn(Φ

L
n(W0)). But as the map

g is a U -module map, it follows that g(W0) ⊂ g(Ωn(Φ
L
n(W0))) ⊂ Ωn(M). Consequently

we obtain a map f : W0 → Ωn(M) which is easily checked to be an An(U)-module map

and to give an inverse correspondence to the prior prescription. □

Of course, we can also do a right handed version of this construction for a right An(U)

module Z0 and obtain in way a right U -module ΦR
n(Z0). We will describe the properties

of ΦL and leave the analogue statements about ΦR to the reader.

Lemma B.1.5. Suppose U is a split-filtered algebra with graded subalgebra U ′ and with

an almost canonical seminorm . Then

ΦL(W0) =
(
U ′/N1

LU
′)⊗U ′

0
W0
∼=

(
U/N1

LU
)
⊗U0 W0.

Proof. This is an immediate consequence of Lemma A.8.1. □

Note that N1
LU is a left U module and a right U≤0 module which is annihilated on

the right by U≤−1 in particular, we can also write the above expression as:(
U/N1

LU
)
⊗U0 W0

∼=
(
U/N1

LU
)
⊗U≤0

W0,

with respect to the truncation quotient map U≤0 → U0 with kernel U≤−1. This is

because the additional relations in the tensor product on the right are of the form

αβ ⊗ w − α ⊗ βw with β ∈ U≤−1 . But αβ ∈ UU≤−1 ∈ N1
LU represents 0 as does β.

Hence these extra relations all vanish.

Remark B.1.6. We see that ΦL(W0) is naturally a graded module, with grading in-

herited from U/N1
LU :

ΦL(W0) =
∞⊕
p=0

(
U/N1

LU
)
p
⊗U0 W0 =

∞⊕
p=0

(
Up/N

1
LUp

)
⊗U0 W0.

Notice here that U−m ⊂ Nm
L U and so

(
U/N1

LU
)
p
= 0 for p < 0.

Lemma B.1.7. The action of U0 on ΦL(W0) via its left module structure induces an

Ad(U) module structure on ΦL(W0)≤d =
⊕d

p=0Φ
L(W0)p.

Proof. We have U≤−d−1Φ
L(W0)≤d = 0 from degree considerations. It follows that

(cNd+1U0)Φ
L(W0) = 0.

But by Lemma A.6.10 cNd+1U0 is dense in Nd+1U0 and by Lemma A.6.5, the multi-

plication action of U0 on U≤d is continuous, and hence so is the multiplication of U

on U≤d/N
1
LU≤d and hence of U on Φ(W0). But as U/N1

LU has a discrete topology, so
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does Φ(W0). Since a dense subset of Nd+1U0 acts as zero, it follows that it acts as zero,

making the action of the algebra Ad(U) well defined. □

B.2. Generalized mode transition algebras. Lemma B.2.1 is the main technical

tool used to define algebraic structures and their actions on generalized Verma modules:

Lemma B.2.1. Suppose U is a graded algebra with an almost canonical seminorm.

Then we have a natural isomorphism(
U/N1

RU
)
⊗U

(
U/N1

LU
)
→ A0(U), α⊗ β 7→ α ⃝⋆ β

where for α, β ∈ U homogeneous, we define α ⃝⋆ β as follows:

α ⃝⋆ β =

0 if deg(α) + deg(β) ̸= 0

[αβ] if deg(α) + deg(β) = 0

and then extend the definition to general products by linearity.

Proof. As our seminorm is almost canonical, the map U0 → U/
(
N1

LU +N1
RU

)
factors

through U → U/(UU≤−1 + U≥1U). But for this map, we see that both U≤−1 and U≥1

are in the kernel, which implies that the restriction to U0 is surjective. The kernel of this

map U ′
0 → U/

(
N1

LU +N1
RU

)
consists of N1

LU0 ∩N1
RU0 = N1U0 (see Remark A.9.4). □

As an application of the above result, we obtain the following.

Corollary B.2.2. Let W0 be a left A0(U)-module and Z0 be a right A0(U)-module.

Then the map defined in Lemma B.2.1 induces an isomorphism

ΦR(Z0)⊗U ΦL(W 0)→ Z0 ⊗A0(U) W0.

Definition B.2.3. For a graded algebra with almost canonical seminorm U , and an

A0(U)-bimodule B, we define a bigraded group:

Φ(B) = ΦR(ΦL(B)) = ΦL(ΦR(B)) =
(
U/N1

LU
)
⊗U0 B ⊗U0

(
U/N1

RU
)

=
⊕
d1≥0

⊕
d2≤0

(
U/N1

LU
)
d1
⊗U0 B ⊗U0

(
U/N1

RU
)
d2
.

We now introduce the space Φ(B) and the operation ⋆ arising from ⃝⋆ which, as we

show below, defines an algebra structure on Φ(B) whenever B is an associative ring

admitting a homomorphism f : A0(U)→ B.

Definition B.2.4. LetB be an associative ring admitting a homomorphism f : A0(U)→
B and letW0 be a left B-module. Then we can define a map Φ(B)×ΦL(W0)→ ΦL(W0)

as follows. For x = α⊗ a⊗ α′ ∈ Φ(B) and β ⊗ w ∈ ΦL(W0) we set

x ⋆ (β ⊗ w) = α⊗ a(α′ ⃝⋆ β)w.

Proposition B.2.5. The map defined in Definition B.2.4 defines an associative algebra

structure on Φ(B) such that the above action of Φ(B) on ΦL(W0) defines a left module

structure. Moreover, γ · (x⋆β) = (γ ·x)⋆y for every x ∈ Φ(B), y ∈ ΦL(W0), and γ ∈ U .
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Analogously, (x ⋆ y) · γ = x ⋆ (y · γ) for every x, y ∈ Φ(B) and γ ∈ U . Finally, with

respect to the bigrading of Definition B.2.3, we have

Φ(U)d1,d2 ⋆ Φ(U)d3,d4 ⊆ Φ(U)d1,d4 and

Φ(U)d1,d2 ⋆ Φ(U)d3,d4 = 0 whenever d2 + d3 ̸= 0.

Proof. We check first that this satisfies the standard associativity relationship for a

module action. Let α⊗ a⊗ α′, β ⊗ b⊗ β′ ∈ Φ(B) and γ ⊗ c ∈ ΦL(W0), then

(α⊗ a⊗ α′) ⋆
(
(β ⊗ b⊗ β′) ⋆ (γ ⊗ c)

)
= (α⊗ a⊗ α′) ⋆ (β ⊗ bf(β′ ⃝⋆ γ)c)

= (α⊗ af(α′ ⃝⋆ β)bf(β′ ⃝⋆ γ)c)

= (α⊗ af(α′ ⃝⋆ β)b⊗ β′) ⋆ (γ ⊗ c)

=
(
(α⊗ a⊗ α′) ⋆ (β ⊗ b⊗ β′)

)
⋆ (γ ⊗ c),

as desired. The associativity of the algebra structure now follows, taking W0 = ΦR(B).

We now check the compatibility with the U -module structure on the left. Set x =

α⊗ a⊗ α′ and y = β ⊗ b. Then

γ ·
(
(α⊗ a⊗ α′) ⋆ (β ⊗ b)

)
= γ · (α⊗ af(α′ ⃝⋆ β)b)

= (γα)⊗ af(α′ ⃝⋆ β)b = ((γα)⊗ a⊗ α′) ⋆ (β ⊗ b).

The other-handed version of the above argument gives us the compatibility with the

U -module structure on the right when W0 = ΦR(B).

The last assertion follows from the product ⃝⋆ as described in Lemma B.2.1. □

Definition B.2.6. For a graded algebra with almost canonical seminorm U , we define

A(U) = Φ(A0(U)) to be the (generalized) mode transition algebra, and we write A(U)d

for the dth mode transition subalgebra A(U)d,−d.

B.3. Relationship with higher generalized Zhu algebras. Throughout this sec-

tion, let us fix a graded algebra U complete with respect to an almost canonical semi-

norm. We will write An in place of An(U) and An in place of An(U).

The action of U0 on An is continuous where An is defined as a discrete module.

Lemma B.3.1. For each d ≥ 0, there is a right exact sequence

(19) Ad
µd−→ Ad

πd−→ Ad−1 −→ 0,

where µd(α ⊗ [u]0 ⊗ β) = [αuβ]d, for all α ∈ Ud (respectively β ∈ U−d) and where α

(respectively β) denotes its class in U/N1
LU (respectively in U/N1

RU).

Proof. We first check that the map µd is well defined. Notice µd is independent on the

lifts of α and β to U , since N1
LU ·U0 ·Ud ⊆ N1U0 and similarly Ud ·U0 ·N1

RU−d ⊆ N1U0.

Analogously, since Ud ·N1U0 ·U−d ⊆ NdU0, the map µd is independent of the lift of [u]0

to u ∈ U0. Finally, we need to show that it respects the tensor products over U0. For

this we need to check that µd(αv ⊗ [u]0 ⊗ β) = µd(α⊗ [vu]0 ⊗ β) for every v ∈ U0. But

by definition both are the class of the element αvuβ in Ad.

We have identifications Ad = U0/N
d+1U0 and Ad−1 = U0/N

dU0. Consequently the

kernel of the canonical projection πd can be written as NdU0/N
d+1U0. It follows from
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the definition of µd and Ad that the image of the µd consists exactly of sums of element

of the form [αβ]d with degα = d and deg β = −d. Hence the image of µd consists of

the image of cNdU0 in Ad. Since we have an almost canonical filtration, we have by

Lemma A.6.9,

NdU0 =
cNdU0 +Nd+1U0,

which shows that µd is therefore surjective onto NdU0/N
d+1U0 = kerπd, showing right

exactness. □

The following result is immediate from the definitions and from the associativity of

the actions.

Lemma B.3.2. Let W0 be an A0-module. Then the action of Ad on ΦL(W0)d factors

through the action of Ad described in Lemma B.1.7 via the map µd.

We now are ready to state the principal result of this section.

Theorem B.3.3. If Ad admits a unity, then (19) is split exact, giving a ring product

Ad
∼= Ad × Ad−1.

Proof. We first check that the map µd is injective. Suppose we are given an element

a ∈ Ad which is in the kernel of this map. By Lemma B.3.2, the action of a on ΦL(M)d

for any M factors through the action of Ad via µd, so it should be 0. If we consider the

case of M = ΦR(A0), this says that, in particular, the action of a on Ad ⊂ ΦL(ΦR(A0))d

is 0. This action is identified with the algebra product via Definition B.2.4. It follows

that since Ad has a unity Id, we have a = a ⋆Id = 0 as claimed.

Since µd is injective we will omit it in the remainder of the proof and see Ad as

naturally sitting inside Ad. Denote the unity in the higher level Zhu algebras Ad by 1,

and write e = Id. Let f = 1− e so that e and f are orthogonal idempotents. Note that

e generates the 2-sided ideal Ad ◁ Ad. Furthermore, since e is the unity of Ad, for every

a ∈ Ad, we have ae = eae = ea and so e ∈ Z(Ad). Consequently f = 1 − e ∈ Z(Ad)

as well. It follows that f and e are orthogonal central idempotents, and therefore

Ad = Ade × Adf as rings. But Ade = Ad and Adf ∼= Ad/Ad
∼= Ad−1 completing our

proof. □
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