

$$f^{-1} \not B$$
 is an $f^{-1} \partial g$ -mad
have a nap $f^{\pm}: f^{-1} \partial g \longrightarrow \partial x$
have a nap $f^{\pm}: f^{-1} \partial g \longrightarrow \partial x$
Gen get an ∂_{χ} -mad by \mathcal{B} . A $\rightarrow B$
N is not
define $f^{\pm} \not B = f^{-1} \not B \not B \quad \partial x$
 $f^{-1} \partial g \not B \quad x$
 $f^{-1} \partial g \not B \quad x$
 $g = N \partial_{\mu} B \quad x$
 $g = N$

$$\widetilde{M}(D_{f}) = M_{f} = \{ \prod_{f=1}^{n} | m \in M, n \in \mathbb{Z}_{\geq 0} \}$$
is an $R_{f} - m = \partial U \in \mathbb{Z}$
if $D_{g} \subset D_{f}$
is a transformed of $f^{\pm} = \frac{n}{f^{\pm}}$
if $D_{g} \subset D_{f}$
is a transformed of $f^{\pm} (f^{\pm}m - f^{\pm}n) : 0$
is a transformed of $f^{\pm} (f^{\pm}m - f^{\pm}n) : 0$
is a transformed of f^{\pm}
Motivation for flootshare defining one for $M_{p} = M_{p}$
is a transformed of $f^{\pm} = \{M_{p} = M_{p} \in M_{p} = M_{p} \in M_{p}$

Prop(S.2)
The fract
$$M \rightarrow \widetilde{M}$$

 $E \ Fract M \rightarrow \widetilde{M}$
 $E \ Fract M \rightarrow \widetilde{M}$
 $E \ Fract M \ Frithful and commutes $n \ O \ f \ O$
and if fispec B \longrightarrow Spec A (A \rightarrow B)
 $HeA \ f_{*}(\widetilde{N}) = \widetilde{A}^{\widetilde{N}}$
 $end \ f^{*}(\widetilde{M}) = \widetilde{M} \ O_{A}^{O}B$$

Def A sheaf of Q mades M on X is
quasicoherent if Z a cour Ui=SpecAi -f X
st.
$$M|_{U_i} = M_i$$
 some Ai-modele Mi.
We say M is coherent if the Mi are finitely
We say M is coherent if the Mi are finitely
(this is the wray db. of
coherent!)

$$\begin{array}{l} P_{ing}(5.6) \quad P \text{ on } q \cdot coh \cdot slues \text{ on affres is}\\ a v_c clic/exact.\\ if \quad 0 - F' \rightarrow F \rightarrow F'' \rightarrow 0 \text{ eract as}\\ slues f \\ q.c. \ O_{\chi} \text{ -neb}\\ q.c. \ O_{\chi} \text{ -neb}\\ nnd \ Xaffre\\ P x a.d. \end{array}$$