Lecture 21: Stacks, spaces and fiber products

Tuesday, October 28, 2014 11:03 AM

Ex S.G.:
7/S alg. spee, F - y stele she franky to Y
then F is an an alg space if and only if J U - Y other
sil. FXyU an alg space.
Def A stack Z/S is an algebraic (Artin) stack if
1)
$$\Delta: Z \longrightarrow Z \times Z$$
 is representable
2) J smooth marghing $\pi: X \longrightarrow Z - I \times a$ scheme.
Surjouture
Facill:
 $Z \longrightarrow Z$
 $Z \longrightarrow Z$

× ~, Fx}E

$$\frac{1}{8} \mathcal{U} \qquad (2 \times 36 \times 10^{-1})(1)$$

$$(1 \times 10^{-1})(1) \qquad (2 \times 36 \times 10^{-1})(1)$$

$$(2 \times 36 \times 10^{-1})(1) \qquad (2 \times 10^{-1})(1) \qquad$$

In privilar, 2-Yandar

$$Y also speces \mathcal{F} shale
Hom $(Y, \mathcal{F}) \xrightarrow{\sim} \mathcal{F}(Y)$
Diagonal Interpretation
 \mathcal{F}/S stack Y/S also spece., $f_{YS}; Y \longrightarrow \mathcal{F}$
we have a fibrer prod diagram it $x_{+}, x_{3} \in \mathcal{F}(Y)$
we have a fibrer prod diagram it $x_{+}, x_{3} \in \mathcal{F}(Y)$
use have a fibrer prod diagram it $x_{+}, x_{3} \in \mathcal{F}(Y)$
 $f_{+} x_{3}$
 $f_{+} x_{3}$
 $f_{+} x_{5}$
 $f_{+} x_{5$$$