Lecture 27: Cohomology of quasi-coherent sheaves on algebraic stacks

Tuesday, November 18, 2014 11:07 AM

Computer colomology:
$$9.2$$

gren a algestick \neq is smooth surjection $X \rightarrow \mathcal{F}$
 $X \times_{\mathcal{X}} X \xrightarrow{\sim} X \xrightarrow{\sim} X$

Simplicial objects:
C
$$\Delta = finile ordered sets, order premy maps$$

 $c = \{c_{0,1,\dots,n}\}$
 $Simp(C) = Frn(\Delta^{oP}, C)$
 U
 $C_2 \equiv C_1 \equiv C_0$
 $(c_{0,1,2}) \quad [o,n] \quad [o]$
 $C_2 = C_1 = C_0$
 $(c_{0,1,2}) \quad [o,n] \quad [o]$

C/X.
Central statements If Casity e train object
X^T e cover. Then
$$H^{i}(C,F) = H^{i}(C'X_{o}, \pi^{*}, F)$$

Ex: \neq dy stack $X^{T} \neq$ source getern F_{q} coh.
Hen $H^{i}(\chi, F) = H^{i}(X_{0}, \pi^{*}, F)$
even better: combinatorial very to compute cohom. at lowe
"simplical sites"
Cech spectral seq: $H^{p}(X_{q}, F_{q}) => H^{p+q}(\chi, F)$
 $E_{1}^{p,q_{0}}$
Vir transled to als: spaces from steeles as above :
D... Let $f(\chi - \chi, G)$ g. compact χ seponded morphism of

1